4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Генератор вандерграфа принцип работы

Генератор Ван де Граафа

В начале 1930-х годов доктор Роберт Ван де Грааф, работавший на тот момент научным сотрудником в Массачусетском технологическом институте и занимавшийся научными исследованиями в области ядерной физики и ускорительной техники, разработал, спроектировал и в скором времени соорудил высоковольтный электростатический ускоритель, работающий по принципу электризуемой ионами воздуха конвейерной ленты (1933).

Позже, в 1936 году, Ван де Граафом был построен (все по тому же принципу) самый большой в мире электростатический генератор постоянного напряжения — тандемный генератор Ван де Граафа, состоящий из двух высоких башен.

Газеты того времени называли изобретение доцента не иначе как революционным, предрекали ему «свершать чудеса» и «открывать тайны природы». Столь сильный ажиотаж в прессе вовсе не удивителен, ведь самый большой двухкаскадный генератор Ван де Граафа состоял из двух огромных колонн диаметром почти по 2 метра каждая и высотой примерно по 15 метров (с закрепленными сверху на колоннах металлическими сферами диаметром по 4,5 метра, внутрь которых механически подавался электрический заряд) и позволял получать разность потенциалов в 7000000 вольт.

Несмотря на низкий КПД устройства в целом (порядка 23%), люди, видевшие чудесный прибор в работе, испытывали неизгладимое впечатление, ведь искровые разряды получались более метра длиной.

Мощности генератора Ван де Граафа хватало для реальной исследовательской работы, — для ускорения атомных ядер, а также элементарных частиц, таких как протоны и электроны, до достаточно высоких скоростей. Так генератор Ван де Граафа, использованный в ускорителях, помогал ученым выявлять составные части атомов, являющие собой структуру физической вселенной.

Говорят, идея относительно принципа работы высоковольтного генератора пришла Ван де Граафу, когда он был еще студентом и наблюдал то и дело проскакивавшие искры статического электричества на работающем печатном станке.

Принцип действия генератора заключается в следующем. Шелковая или резиновая лента (диэлектрическая лента) натянута и вращается подобно конвейерной ленте на паре роликов, один из которых находится в основании колонны, второй — внутри полости проводящей сферы наверху. Нижний ролик изготовлен из металла и гальванически соединен с землей, он приводится во вращение двигателем. Верхний ролик — диэлектрический.

К ленте снизу, под нижним роликом, с небольшим зазором подведена металлическая щетка, соединенная с положительной клеммой источника высокого напряжения, отрицательная клемма которого присоединена непосредственно к нижнему ролику.

Итак, между нижним роликом и щеткой движется диэлектрическая лента (в реальном генераторе лента имела ширину около 120 см). Под действием высокого напряжения (порядка 20000 вольт) между роликом и щеткой, воздух между ними ионизируется и положительные ионы воздуха, влекомые силой Кулона, устремляются к отрицательно заряженному ролику. Но поскольку на пути ионов находится диэлектрическая лента, ионы оседают на ленте, заряжая ее таким образом.

Лента движется снизу вверх, внизу она непрерывно получает заряд, одновременно с этим заряд с ее поверхности непрерывно забирается возле верхнего ролика, так как верхний ролик внутри сферы тоже имеет расположенную рядом с собой щетку. Щетка снимает заряд с ленты, и будучи соединена гальванически с внутренней поверхностью полой проводящей сферы, передает ей заряд, все больше и больше электризуя эту сферическую емкость по всей ее наружной поверхности, по сути нагнетая, накачивая в нее заряд.

Принципиальная возможность накопления заряда в емкости сферы генератора Ван де Граафа ограничивается коронным разрядом, который неизбежно возникнет из-за ионизации окружающего сферу воздуха. Теоретический предел для сферы диаметром 4,5 метра составляет примерно 17000000 вольт.

Американский ученый Джеймс Стаки и доброволец Джуди Криден демонстрируют способность человеческого организма проводить электрический ток. Лекция в Нью-Йорке, 1966 г.

Генератор Ван де Граафа

В различных областях науки и техники используются ускорители заряженных частиц — электронов, протонов, ионов. Такие ускорители могут быть построены на различных принципах. В том числе, на электростатическом принципе. Одним из типов генераторов, построенных на таком принципе, является генератор Ван де Граафа. В этом приборе, который был изобретен в 1929 году профессором Массачусетского университета Ван де Граафом, использовался принцип создания поля сверхвысокого напряжения путем электризации ленты из диэлектрика, которая передвигается с помощью двигателя.

Конструкция и принцип действия

Конструкция генератора бывает вертикальной и горизонтальной. Наиболее распространенной является установка с вертикальным расположением.
В состав такого генератора входят:

  • бесконечная диэлектрическая резиновая или шелковая лента, двигающаяся со скоростью 20-40 м/c на 2-х вращающихся шкивах;
  • 2 шкива. Нижний шкив выполнен из металла и вращается электродвигателем, а верхний шкив изготовлен из диэлектрика, например, акрилового стекла;
  • полый металлический электрод в виде полусферы, внутри которого находится верхний шкив. Этот электрод укреплен на изоляторе;
  • источник высокого напряжения.

Нижний шкив заземлен. На электрод, находящийся вблизи этого шкива, подается высокое напряжение. На небольшом расстоянии от верхнего и нижнего шкивов установлены электроды, выполненные в виде щетки или гребенки. Верхний электрод соединен с полой полусферой.

Принцип работы прибора

Под воздействием высокого напряжения в воздушном слое, находящимся между нижним щеточным электродом и нижним шкивом, образуются положительно заряженные ионы. Эти ионы притягиваются к металлическому шкиву, оседают на диэлектрической ленте и транспортируются к полому полусферическому электроду. С помощью верхнего щеточного электрода эти ионы снимаются с ленты и попадают на поверхность сферического электрода. С течением времени происходит накапливание заряда и повышение потенциала этого электрода относительно земли.

Читать еще:  Почему сгорает диодный мост генератора

Максимальная величина получаемого напряжения определяется напряжением разряда, возникающего вокруг сферического электрода в результате ионизации окружающего электрод воздуха. При увеличении диаметра сферы это напряжение возрастает.

Для его увеличения в установках с относительно небольшой сферой прибор помещают в герметический корпус, который наполняется под давлением в 20 атмосфер газами с большой электрической прочностью. К таким газам относятся азот, фреон и другие газы. Такой корпус, выполненный из изоляционных материалов, служит также для обеспечения безопасности людей.

Тандемный генератор

Тандемный генератор состоит из 2-х каскадов. В таком генераторе создаются отрицательные ионы, которые летят в сторону находящегося под высоким положительным потенциалом электрода, находящегося в середине заполненного газом сосуда. Проходя через находящийся внутри электрода канал, отрицательные ионы, имеющие энергию в 10 МэВ, отдают свои электроны и превращаются в положительные ионы. Далее пучок этих положительных электронов перемещается в сторону электрода, имеющего нулевой потенциал. Таким образом, можно получить пучок протонов с удвоенной энергией.

Использование

В первом случае они используются для проведения ядерных реакций и для ввода частиц в ускорители. Такие установки есть в большинстве ядерных лабораторий, в которых исследователи имеют дело с частицами малых и средних энергий.
В таких ускорителях под воздействием создаваемого генератором напряжения происходит формирование и ускорение пучков частиц.

Во втором случае генераторы применяются для лучевой терапии и исследований. При этом пучки частиц ударяются в мишень и создают жесткое излучение.

Кроме того, такие генераторы могут быть использованы в качестве учебных пособий для демонстрации явлений электростатики, а также для исследования грозовых разрядов и ударов молнии.

Технические характеристики

1-й генератор данного типа вырабатывал напряжение в 80 кВ. В дальнейшем изобретатель получил напряжения в 1 МВ и 7МВ. При этом напряжение первичного источника было 50 кВ.

Современные установки позволяют получить с помощью этого генератора напряжения в 20 миллионов вольт. Для этого используются тандемные установки. При этом ток в пучках может достичь нескольких мА, а энергия частиц – 40-50 МэВ.

Для получения частиц с большей энергией используются более мощные установки – циклотроны, коллайдеры.

Наиболее мощный генератор Ван де Граафа был использован в английской лаборатории Daresbury, в которой с 1983 по 1993 годы проводились ядерные эксперименты. В установке был использован тандемный генератор, развивающий напряжение в 20 МВ. Этот генератор располагался в здании высотой в 70 м. Важнейшим открытием, выполненным с помощью этой установки, было открытие супердеформированных ядер.

До войны в Советском Союзе был также построен большой генератор такого типа. На 2-х фарфоровых изоляторах были установлены металлические шары диаметром в 5 м. Напряжение между шарами достигало 15 МВ. При разряде появлялись молнии размеров в 15 м. При этом время заряда достигало 10 минут, а средняя мощность установки была менее 100 Вт.

Генераторы для опытов и образования

Генераторы Ван де Граафа могут быть использованы для проведения опытов в области физики и электростатики. При этом большое количество генераторов имеется в продаже. Также в Интернете приведено много разных схем и конструкций для самостоятельного изготовления генератора.

Примером такого устройства является генератор, производимый немецкой компанией 3B Scientific GmbH. Цена такого прибора 104076 руб.

Основные характеристики прибора:

  • создаваемое напряжение около 100 кВ;
  • ток короткого замыкания-15 мкА;
  • питание двигателя от сети переменного тока;
  • мощность потребления -13 ВА;
  • размеры -240х120х620 мм;
  • размеры шара – диаметр 90 мм, высота 420 мм;
  • вес генератора -5,8 кг.
  1. Данный прибор может представлять опасность для близко стоящих к прибору людей, у которых вживлен кардиостимулятор.
  2. Компьютерам и другим электронным приборам он может создавать ВЧ помехи.
  3. Нельзя использовать прибор во влажных помещениях.
  4. Нельзя прикасаться к цепям прибора.
  5. Включать прибор можно только в сетевую розетку, имеющую заземление.
  6. При замене предохранителя необходимо обязательно отключать прибор от сети.

Подготовка и включение прибора:

  1. Перед включением генератора снять сферу, подняв ее вверх.
  2. Очистить поверхность шкивов. При необходимости вымыть их и просушить феном.
  3. Установить ленту в шкивы.
  4. Поставить сферу на место.
  5. Заземлить металлическую пластину и электрод.
  6. Включить двигатель и выбрать необходимую скорость.
  7. Для проверки заряда путем получения искры медленно передвигать ленту к металлической сфере.
  8. В случае влажности просушить прибор феном.

Достоинства и недостатки

Достоинством генераторов Ван де Граафа состоят в том, что с их помощью можно получить пучки заряженных частиц, у которых имеются следующие качества:

  • непрерывность;
  • высокая интенсивность;
  • отличная стабильность по энергии. Эта характеристика пучка достигает величины 0,01%;
  • малая расходимость (менее тысячной доли радиана).

Недостатки генераторов:

  • ограничения по величине получаемых напряжений и энергии частиц;
  • повышенные требования к пробойному напряжению колонны и ленты;
  • трудности измерения сверхвысоких напряжений;
  • наличие вращающихся частей, уменьшающих надежность устройства.

Генератор Ван де Граафа своими руками. Описание и принцип работы

На уроках физики, чтобы показать действие, совершаемое статическим электричеством, демонстрируют генератор Ван де Граафа. Необычное устройство, пуская в разные стороны миниатюрные молнии, приводит в восторг учеников. Но мало кто знает, что генератор также использовался для опытов в сфере ядерной физики.

История создания

Американский физик Роберт Ван де Грааф (1901-1967), работавший в Принстонском университете, вошел в историю как создатель электростатического ускорителя элементарных частиц.

Первое описание генератора Ван де Граафа было сделано в 1929 году, а через два года он создал высоковольтный ускоритель, который мог выдавать электрическое напряжение 1 МВ. В 1935 году усовершенствованная конструкция вырабатывала уже 7 мегавольт.

Читать еще:  Генераторы дыма для холодного копчения

Генератор Ван де Граафа впоследствии стал основой для современной разновидности линейного ускорителя, названного пеллетроном. Разница между ними заключалась в способе передачи заряженных частиц. Если у генератора они передавались при помощи диэлектрической ленты, то у пеллетрона — металлической цепью.

Принцип действия

Конструкция генератора позволяет делать его как в горизонтальном исполнении, так и в вертикальном. Основной его частью является большая металлическая сфера, на поверхности которой происходит накопление заряженных частиц. Внутри корпуса из изолированного материала находятся два ролика, соединенных между собой диэлектрической лентой. Изначально она была выполнена из шелка и резины, а впоследствии заменена цепью.

Нижний ролик имеет заземление и соединение с малой сферой, также у него есть привод для вращения. Верхний ролик через металлическую щетку соединен с большой сферой.

По мере вращения нижнего ролика происходит ионизация воздуха с последующим переносом заряженных частиц к верхнему ролику. Через металлическую щетку поток ионов переносится на поверхность большой сферы, где накапливается в виде электростатического заряда.

Мощность генератора Ван де Граафа ограничена коронным разрядом, создающим светящуюся оболочку вокруг заряженного электрода.

Где применяется генератор

Изначально устройство применялось для разгона заряженных частиц, но со временем появились более совершенные ускорители, и необходимость в нем отпала. В настоящее время опыты с генератором Ван де Граафа ставятся в основном для моделирования процессов, происходящих во время грозовых разрядов.

В современных школах это устройство является стандартным оборудованием физических кабинетов. На территории бывшего СССР генератор не выпускался. В школах для опытов использовалась электрофорная машина Вимшурста, которая была впоследствии названа «Разряд».

Способность генератора издавать разряды используется в различных шоу-программах и цирковых трюках. Он может создавать поле, удерживающее в воздухе небольшие предметы, а мощный заряд позволяет работать электрическим приборам вдали от источника электричества.

Меры предосторожности

Как любое устройство, создающее высокое напряжение, генератора Ван де Граафа требует мер предосторожности при работе с ним. Разряду неважно, где возникать: между разнополярными электродами или между заряженным электродом и телом человека. Достаточно существенной разницы в потенциалах. Поэтому при работе с генератором человек должен находиться на резиновом коврике, чтобы его потенциал оставался нейтральным по отношению к накопленному заряду.

Если человек будет находиться на полу, тем более на влажном, то он станет отличным проводником для передачи заряженных частиц земле, и через его тело пройдет разряд величиной в несколько тысяч, а может, и миллионов вольт. Единственное, что может позволить человеку остаться в живых — это малая сила тока.

Люди, имеющие кардиостимуляторы, не должны приближаться к генератору. Электронные приспособления, такие как часы, сотовые телефоны, могут давать сбой в работе. Поэтому перед началом экспериментов нужно оставить их в стороне.

Перед началом работы

Элементы генератора, такие как ленты, шкивы, сфера, притягивают к себе пыль, как магнит. Перед началом работы нужно очистить механизмы. Для этого нужно снять большую сферу и влажной тряпочкой протереть детали устройства. Если накопленный заряд не позволяет избавиться от пыли, то можно применить спрей-антистатик для волос.

Самое важное, что нужно сделать до начала вращения генератора — это убедиться в заземлении малого электрода. Иначе разряд будет бить в объект, обладающий большей массой, то есть в человека.

Из чего собрать генератор в домашних условиях

Теперь, когда принцип действия генератора Ван де Граафа известен, можно самостоятельно собрать действующую модель для домашних экспериментов. После небольших испытаний выяснилось, что для получения заряженных частиц лучше всего подходит труба ПВХ для водопровода. Если ее потереть синтетическим материалом, то появившийся в ней заряд позволят притягивать мелкие бумажки, отклонять струю воды, падающей вниз. Поэтому ПВХ-труба станет источником заряженных частиц.

А что будет переносить электроны на сферу генератора? Опыты показали, что лучше всего подходит медицинский бинт Мартенса. Он состоит из полиэстера, латекса и хлопчатобумажной ткани.

Теперь, когда определились с основными рабочими частями, составляется полный список необходимых материалов:

  1. Большая металлическая сфера. Она изготавливается из двух крупных салатниц, продающихся в ближайшем гипермаркете.
  2. Труба ПВХ. Потребуется 2 отрезка разного диаметра. Первый станет корпусом генератора, а второй нужно подобрать таким образом, чтобы он плотно надевался на шкив, соединенный с приводом.
  3. Верхний шкив. Можно использовать любой подходящий предмет, на котором бы держалась лента, не соскакивая. Например, старую втулку от велосипедного колеса или большую пластиковую катушку с бортами.
  4. Отрезок медного многожильного провода. Из него будут изготовлены щетки, снимающие и передающие заряд.
  5. Маломощный электродвигатель. Потребуется для вращения нижнего шкива. Однако если есть желание, то привод можно сделать ручной.
  6. Металлические планки для опоры генератора, а также для фиксации шкивов на ПВХ трубе.
  7. Металлический половник. Будет выступать в роли малого электрода.

Сборка генератора Ван де Граафа своими руками

Когда все материалы подготовлены, можно приступить к изготовлению:

    Из металлических планок сделать прямоугольную основу для генератора. Ее нужно выполнить в форме квадрата. Размеры должны обеспечивать устойчивость конструкции. Также нужно предусмотреть крепление под электродвигатель.

Прототипы генератора Ван де Граафа на фото столетней давности мало отличаются от устройства, сделанного своими руками. Теперь, когда прибор полностью готов, можно приступать к опытам.

Генератор Ван де Граафа. Работа и применение. Особенности

Генератор Ван де Граафа является одним из самых известных генераторов высокого напряжения, который позволяет визуализировать поведение электронов. Устройство не нашло практического применения, и обычно используется как развлекательный прибор, показывающий принцип действия различных физических процессов. Генератор изобретен в 1929 году и был назван в честь своего открывателя.

Читать еще:  Дымогенератор из трубы дымохода
Как действует генератор Ван де Граафа

Данное устройство может иметь два варианта исполнения: горизонтальное и вертикальное. Оба работают по одинаковому принципу и имеют внутри аналогичный набор деталей. Чаще всего применяется вертикальная установка, поскольку она позволяет добиться лучшего обзора при генерировании зарядов.

Генератор состоит из 5 основных элементов:
  • Ремешок из диэлектрической ленты.
  • Металлический шкив.
  • Шкив из диэлектрического материала.
  • Металлическая сфера.
  • Диэлектрический корпус с подставкой.

Металлический токопроводящий шкив находится в нижней части стойки генератора, а диэлектрический вверху. Между ними натянут ремешок из резины или шелка. Нижний шкив имеет заземление. В близи него находится электрод в виде щетки, на который подается напряжение. У верхнего шкива устанавливается второй электрод щетка, который подсоединен к сфере на верху генератора. Обе щетки трутся о диэлектрическую ленту.

Принцип работы генератора довольно простой. Его можно понять, даже имея пробелы в знаниях основных законов физики. Поскольку нижний щеточный электрод находится под высоким напряжением, а шкив, который закреплен рядом, выполнен из металла, то в воздушном пространстве между ними создаются положительно заряженные ионы. Они притягиваются к шкиву и налипают на электрическую ленту, которая вращается и поднимает ионы вверх к сфере, также выполняющей роль электрода. Верхние щетки снимают ионы, и отправляют их на металлическую сферу. Благодаря своей форме она накапливает положительно заряженные частицы. Вращающаяся лента постоянно доставляет все новые и новые ионы, пока не создастся их достаточного скопления для повышения потенциала на электроде.

Практическое использование

Генератор Ван де Граафа практически не нашел применения для выполнения полезных функций. Однако, его можно использовать для исследования поведения атомов. Многие ядерные лаборатории имеют среди своего технического оборудования и генератор Ван де Граафа, с помощью которого проводится ускорение частиц, что необходимо для начала ядерных реакций.

Подавляющее большинство существующих генераторов, работающих по данному принципу, используется в качестве учебного пособия, позволяющего демонстрировать процесс электростатики. Нередко генератор используется в развлекательных шоу. С его помощью имитируют миниатюрные молнии. Кроме того, вокруг сферы устройства создается поле, способное приподнимать легкие предметы. Самым известным и зрелищным способом демонстрации является отпускание над генератором небольшого кусочка фольги, который благодаря малому весу и токопроводимости удерживается на весу полем устройства. Он кружит вокруг сферы на протяжении продолжительного времени, особенно если имеет хорошую балансировку. Со временем траектория его полета искажается, и он прилипает к генератору.

Мощный генератор Ван де Граафа способен создавать крупные молнии, поэтому зрелище от использования такого прибора действительно завораживает. В связи с этим не удивительно, что на подобные представления приходят посетители, несмотря на то, что данные устройства существуют уже почти 100 лет. Вблизи генератора начиняют гореть осветительные приборы, неподключенные к сети.

Коронным трюком с использованием генератора является поднятие волос на голове. Нужно предварительно встать на резиновый коврик, после чего одной рукой прикоснуться к шару устройства.

Как пользоваться генератором

Применение генератора требует соблюдение определенных правил. Их нарушение может вызывать неприятные последствия. Получение разряда с его сферы по ощущениям похоже на удар молнии. Конечно, это опасно, но только в том случае если применяется генератор, который создает действительно большие напряжения.

Перед применением устройства его нужно очистить от постоянно прилипающей пыли, которая обычно покрывает диэлектрическую ленту и шкивы. Специально для этого в генераторах предусматривается возможность снятия сферы. Если грязь не захочет стираться, ее можно просто смыть, но после этого устанавливать детали обратно можно только после их высыхания.

Перед включением напряжения, генератор нужно заземлить, после чего запустить привод для обеспечения вращения ленты.

Правила предосторожности

В случае включения генератора в сетевую розетку необходимо, чтобы она имела заземление. Категорически запрещено прикасаться к поверхности устройства, за исключением нахождения ног на диэлектрическом коврике.

Запрещено приближаться к работающему генератору в случае использования кардиостимулятора. Также нужно учитывать, что прибор может навредить современному техническому оборудованию. В связи с этим, перед экспериментами с генератором нужно отложить в сторону мобильный телефон и электронные часы. Включенная вблизи от генератора компьютерная техника часто испытывает помехи, поэтому начинает показывать изображение на экране с дефектами. Это продолжается на протяжении всего периода, пока работает генератор.

Технические характеристики

Первый прототип генератора, который был успешно запущен, генерировал напряжение 80 КВ. Это высокий показатель, но является практически ничтожным против современных достижений. Установки, которые используются сегодня, способны генерировать 20 млн. вольт.

Самый мощный генератор Ван де Граафа построенный в истории выдавал напряжение в 20 МВ. Именно с его помощью были открыты суперформированные ядра.

Серийно выпускаются компактные генераторы, предназначенные для использования в кабинетах физики как наглядное учебное пособие. Такие устройства значительно более безопасные, и не выдают мощные разряды. Для проведения шоу по созданию молний обычно применяются генераторы, напряжение которых на выходе составляет до 100 кВ. Они питаются от обычной сети переменного тока на 220В. Высота таких устройств составляет 40-60 см, а вес редко превышает 7 кг.

Самостоятельное изготовление

Генератор Ван де Граафа очень часто изготовляется самостоятельно любителями физических экспериментов. Сделать его совсем несложно, но конечно самоделка не питается от сети переменного тока, поэтому совершенно безопасна. Нижняя щетка прибора подключается к блоку питания зарядного устройства обыкновенного мобильного телефона. В качестве диэлектрического ремешка для натяжения между роликами применяется изолента. Вместо токопроводящей сферы устанавливается обыкновенная алюминиевая банка из-под газировки.

Подобный примитивный генератор хотя и не может генерировать зрелищные молнии, но вполне способен при работе приподнимать фольгу, заставлять уклоняться в сторону тонкую струю воды из-под крана, и питать мелкие светодиоды, от чего они светятся.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector