9 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Условное обозначение реостата на схеме

Условное обозначение резисторов на схемах

Резистор (англ. resistor, от лат. resisto—сопротивляюсь) — радиокомпонент, основное назначение которого оказывать активное сопротивление электрическому току. Основные характеристики резистора — номинальное сопротивление и рассеиваемая мощность. Наиболее широко используются постоянные резисторы, реже — переменные, подстроечные, а также резисторы, изменяющие свое сопротивление под действием внешних факторов.

Постоянные резисторы бывают проволочными (из провода с высоким и стабильным удельным сопротивлением) и непроволочными (с резистивным элементом, например, в виде тонкой пленки из оксида металла, пиролитического углерода и т. д.). Однако на схемах их обозначают одинаково — в виде прямоугольника с линиями электрической связи, символизирующими выводы резистора (рис. 1). Это условное графическое обозначение — основа, на которой строятся обозначения всех разновидностей резисторов. Указанные на рис. 1 размеры резисторов установлены ГОСТом и их следует соблюдать при вычерчивании схем.

На схемах рядом с обозначением резистора (по возможности сверху или справа) указывают его условное буквенно-цифровое позиционное обозначение и номинальное сопротивление. Позиционное обозначение состоит из латинской буквы R (Rezisto) и порядкового номера резистора но схеме. Сопротивление от 0 до 999 Ом указывают числом без обозначения единицы измерения (51 Ом —> 51), сопротивления от 1 до 999 кОм — числом со строчной буквой к (100 кОм —> 100 к), сопротивления от 1 до 999 МОм — числом с прописной буквой М (150 МОм —> 150 М).

Если же позиционное обозначение резистора помечено звездочкой (резистор R2* на рис.1), то это означает, что сопротивление указано ориентировочно и при налаживании устройства его необходимо подобрать по определённой методике.

Номинальную рассеиваемую мощность указывают специальными значками внутри условного графического обозначения (рис. 2).

Постоянные резисторы могут иметь отводы от резистивного элемента (рис. 3, а), причем, если необходимо, то символ резистора вытягивают в длину (рис. 3, б).

Переменные резисторы используют для всевозможных регулировок. Как правило, у такого резистора минимум три вывода: два — от резистивного элемента, определяющего номинальное (а практически — максимальное) сопротивление, и один — от переметающегося по нему токосъемника — движка. Последний изображают в виде стрелки, перпендикулярной длинной стороне основного условного графического изображения (рис. 4, а). Для переменных резисторов в реостатном включении допускается использовать условное графическое изображение рис. 4, б. Переменные резисторы с дополнительными отводами обозначаются так, как показано на рис. 4, е. Отводы у переменных резисторов показывают так же, как и у постоянных (см. рис. 3).

Для регулирования громкости, тембра, уровня в стереофонической аппаратуре, частоты в измерительных генераторах сигналов применяют сдвоенные переменные резисторы. На схемах условных графических изображений входящие в них резисторы стараются расположить возможно ближе друг к другу, а механическую связь показывают либо двумя сплошными линиями, либо одной штриховой (рис. 5, а). Если же сделать этого не удается, т. е. символы резисторов оказываются на удалении один от другого, то механическую связь изображают отрезками штриховой линии (рис. 5, б). Принадлежность резисторов к сдвоенному блоку указывают в позиционном обозначении (R2.1 — первый резистор сдвоенного переменного резистора R2, R2.2 — второй).

В бытовой аппаратуре часто применяют переменные резисторы, объединенные с одним или двумя выключателями. Символы их контактов размещают на схемах рядом с условным графическим изображением переменного резистора и соединяют штриховой линией с жирной точкой, которую изображают с той стороны обозначения, при перемещении к которой движок воздействует на выключатель, (рис. 6, а). При этом имеется в виду, что контакты замыкаются при движении от точки, а размыкаются при движении к ней. В случае если обозначение резистора и выключателя на схеме удалены один от другого, механическую связь показывают отрезками штриховых линий (рис. 6, б).

Подстроенные резисторы — это разновидность переменных. Узел перемещения движка таких резисторов чаще всего приспособлен для управления отверткой и не рассчитан на частые регулировки. Обозначение подстроечного резистора (рис. 7) наглядно отражает его назначение: практически это постоянный резистор с отводом, положение которого можно изменять.

Из резисторов, изменяющих свое сопротивление под действием внешних факторов, наиболее часто используют терморезисторы (обозначение RK) и варисторы (RU). Общим для условного графического изображения резисторов этой группы является знак нелинейного саморегулирования в виде наклонной линии с изломом внизу (рис. 8).

Для указания внешних факторов воздействия используют их общепринятые буквенные обозначения: f (температура), U (напряжение) и т. д.

Знак температурного коэффициента сопротивления терморсзисторов указывают только в том случае, если он отрицательный (см. рис. 8, резистор RK2).

Обозначение радиоэлементов на схемах

В этой статье мы рассмотрим обозначение радиоэлементов на схемах.

С чего начать чтение схем?

Для того, чтобы научиться читать схемы, первым делом, мы должны изучить как выглядит тот или иной радиоэлемент в схеме. В принципе ничего сложного в этом нет. Вся соль в том, что если в русской азбуке 33 буквы, то для того, чтобы выучить обозначения радиоэлементов, придется неплохо постараться.

До сих пор весь мир не может договориться, как обозначать тот или иной радиоэлемент либо устройство. Поэтому, имейте это ввиду, когда будете собирать буржуйские схемы. В нашей статье мы будем рассматривать наш российский ГОСТ-вариант обозначения радиоэлементов

Изучаем простую схему

Ладно, ближе к делу. Давайте рассмотрим простую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании:

Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Но среди моих читателей есть и те, кто впервые сталкивается с подобными чертежами. Поэтому, эта статья в основном именно для них.

Ну что же, давайте ее анализировать.

В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Всякую разную схему можно представить в виде отдельного блока, на который мы что-то подаем и с которого мы что-то снимаем. Здесь у нас схема блока питания, на который мы подаем 220 Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение. То есть вы должны понимать, какую основную функцию выполняет ваша схема. Это можно прочесть в описании к ней.

Читать еще:  Перосъемная насадка своими руками видео

Как соединяются радиоэлементы в схеме

Итак, вроде бы определились с задачей этой схемы. Прямые линии – это провода, либо печатные проводники, по которым будет бежать электрический ток. Их задача – соединять радиоэлементы.

Точка, где соединяются три и более проводников, называется узлом. Можно сказать, в этом месте проводки спаиваются:

Если пристально вглядеться в схему, то можно заметить пересечение двух проводников

Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте провода не соединяются и они должны быть изолированы друг от друга. В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:

Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.

Если бы между ними было соединение, то мы бы увидели вот такую картину:

Буквенное обозначение радиоэлементов в схеме

Давайте еще раз рассмотрим нашу схему.

Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.

Итак, давайте первым делом разберемся с надписями. R – это значит резистор. Так как у нас он не единственный в схеме, то разработчик этой схемы дал ему порядковый номер “2”. В схеме их целых 7 штук. Радиоэлементы в основном нумеруются слева-направо и сверху-вниз. Прямоугольник с чертой внутри уже явно показывает, что это постоянный резистор с мощностью рассеивания в 0,25 Ватт. Также рядом с ним написано 10К, что означает его номинал в 10 Килоом. Ну как-то вот так…

Как же обозначаются остальные радиоэлементы?

Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды – это группа, к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов:

А – это различные устройства (например, усилители)

В – преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся.

D – схемы интегральные и различные модули

E – разные элементы, которые не попадают ни в одну группу

F – разрядники, предохранители, защитные устройства

G – генераторы, источники питания, кварцевые генераторы

H – устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации

K – реле и пускатели

M – двигатели

Р – приборы и измерительное оборудование

Q – выключатели и разъединители в силовых цепях. То есть в цепях, где “гуляет” большое напряжение и большая сила тока

R – резисторы

S – коммутационные устройства в цепях управления, сигнализации и в цепях измерения

U – преобразователи электрических величин в электрические, устройства связи

V – полупроводниковые приборы

W – линии и элементы сверхвысокой частоты, антенны

X – контактные соединения

Y – механические устройства с электромагнитным приводом

Z – оконечные устройства, фильтры, ограничители

Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента. Ниже приведены основные виды элементов вместе с буквой группы:

BD – детектор ионизирующих излучений

BE – сельсин-приемник

BL – фотоэлемент

BQ – пьезоэлемент

BR – датчик частоты вращения

BS – звукосниматель

BV – датчик скорости

BA – громкоговоритель

BB – магнитострикционный элемент

BK – тепловой датчик

BM – микрофон

BP – датчик давления

BC – сельсин датчик

DA – схема интегральная аналоговая

DD – схема интегральная цифровая, логический элемент

DS – устройство хранения информации

DT – устройство задержки

EL – лампа осветительная

EK – нагревательный элемент

FA – элемент защиты по току мгновенного действия

FP – элемент защиты по току инерционнго действия

FU – плавкий предохранитель

FV – элемент защиты по напряжению

GB – батарея

HG – символьный индикатор

HL – прибор световой сигнализации

HA – прибор звуковой сигнализации

KV – реле напряжения

KA – реле токовое

KK – реле электротепловое

KM – магнитный пускатель

KT – реле времени

PC – счетчик импульсов

PF – частотомер

PI – счетчик активной энергии

PR – омметр

PS – регистрирующий прибор

PV – вольтметр

PW – ваттметр

PA – амперметр

PK – счетчик реактивной энергии

PT – часы

QF – выключатель автоматический

QS – разъединитель

RK – терморезистор

RP – потенциометр

RU – варистор

SA – выключатель или переключатель

SB – выключатель кнопочный

SF – выключатель автоматический

SK – выключатели, срабатывающие от температуры

SL – выключатели, срабатывающие от уровня

SP – выключатели, срабатывающие от давления

SQ – выключатели, срабатывающие от положения

SR – выключатели, срабатывающие от частоты вращения

TV – трансформатор напряжения

TA – трансформатор тока

UB – модулятор

UI – дискриминатор

UR – демодулятор

UZ – преобразователь частотный, инвертор, генератор частоты, выпрямитель

VL – прибор электровакуумный

VS – тиристор

WA – антенна

WT – фазовращатель

WU – аттенюатор

XA – токосъемник, скользящий контакт

XP – штырь

XS – гнездо

XT – разборное соединение

XW – высокочастотный соединитель

YA – электромагнит

YB – тормоз с электромагнитным приводом

YC – муфта с электромагнитным приводом

YH – электромагнитная плита

ZQ – кварцевый фильтр

Графическое обозначение радиоэлементов в схеме

Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:

Условные обозначения в различных электрических схемах

Чтение электрических схем необходимый навык для представления работы электрических сетей, узлов, а также различного оборудования. Ни один специалист не приступит к монтажу оборудования, до ознакомления с нормативными сопровождающими документами.

Принципиальные электрические схемы позволяют разработчику донести полный доклад об изделии в сжатом виде до пользователя, используя условно графические обозначения (УГО). Чтобы избежать путаницы и брака при сборке по чертежам, буквенно-графические обозначения занесены в единую систему конструкторской документации (ЕСКД). Все принципиальные схемы разрабатываются, и применяются в полном соответствии с ГОСТами (21.614, 2.722-68, 2.763-68, 2.729-68, 2.755-87). В ГОСТе описываются элементы, приводится расшифровка значений.

Чтение чертежей

Принципиальная электрическая схема показывает все элементы, детали и сети, входящие в состав чертежа, электрические и механические связи. Раскрывает полную функциональность системы. Всем элементам любой электрической схемы соответствуют обозначения, позиционированные в ГОСТе.

К чертежу прилагается перечень документов, в котором прописываются все элементы, их параметры. Компоненты указываются в алфавитном порядке, с учетом цифровой сортировки. Перечень документов (спецификация) указывается на самом чертеже, либо выносится отдельными листами.

Читать еще:  Рукоятка молотка увеличивает силу удара

Порядок изучения чертежей

Как читать электрические схемы правильно и понимать представленную на чертеже информацию? Достаточно уметь ориентироваться в условно-графических обозначениях ГОСТа, это основа каждого разработанного проекта.

Сначала определяют тип чертежа. Согласно по ГОСТ 2.702-75, каждому графическому документу соответствует индивидуальный код. Все электрические чертежи имеют буквенное обозначение «Э» и соответствующее цифровое значение от 0 до 7. Электрической принципиальной схеме соответствует код «Э3».

Чтение принципиальной схемы:

  • Визуально ознакомится с представленным чертежом, обратить внимание на указанные примечания и технические требования.
  • Найти на схематическом изображении все компоненты, указанные в перечне документа;
  • Определить источник питания системы и род тока (однофазный, трехфазный);
  • Найти основные узлы, и определить их источник электропитания;
  • Ознакомится с элементами и устройствами защиты;
  • Изучить способ управления, обозначенный на документе, его задачи и алгоритм действий. Понять последовательность действий устройства при запуске, остановке, коротком замыкании;
  • Анализировать работу каждого участка цепи, определить основные составляющие, вспомогательные элементы, изучить техническую документацию перечисленных деталей;
  • На основе изученных данных документа, сделать вывод о процессах, протекающих в каждом звене цепи, представленной на чертеже.

Зная последовательность действий, буквенно-графические обозначения, можно прочитать любую электрическую схему.

Графические обозначения

Принципиальная схема имеет две разновидности — однолинейная и полная. На однолинейной чертят только силовой провод со всеми элементами, если основная сеть не отличается индивидуальными дополнениями от стандартно принятой. Нанесенные на линию провода две или три косые черты, обозначают однофазную или трехфазную сеть, соответственно. На полной чертят всю сеть и проставляют общепринятые условные обозначения в электрических схемах.

Однолинейная электрическая принципиальная схема, однофазная сеть

Виды и значение линий

  1. Тонкая и толстая сплошные линии — на чертежах изображает линии электрической, групповой связи, линии на элементах УГО.
  2. Штриховая линия — указывает на экранирование провода или устройств; обозначает механическую связь (мотор — редуктор).
  3. Тонкая штрихпунктирная линия — предназначается для выделения групп из нескольких компонентов, составляющих частей устройства, либо систему управления.
  4. Штрихпунктирная с двумя точками — линия разъединительная. Показывает развертку важных элементов. Указывает на удаленный от устройства объект, связанный с системой механической или электрической связью.

Сетевые соединительные линии показывают полностью, но согласно стандартам, их допускается обрывать, если они являются помехой для нормального понимания схемы. Обрыв обозначают стрелками, рядом указывают основные параметры и характеристики электрических цепей.

Жирная точка на линиях указывает на соединение, спайку проводов.

Электромеханические составляющие

Схематическое изображение электромеханических звеньев и контактов

А — УГО катушки электромеханического элемента (магнитный пускатель, реле)

В — тепловое реле

С — катушка прибора с механической блокировкой

D — контакты замыкающие (1), размыкающие (2), переключающие (3)

F — обозначение выключателя (рубильника)на электрической схеме УГО некоторых измерительных приборов. Полный список этих элементов приведен в ГОСТе 2.729 68 и 2.730 73.

Что такое резистор и для чего он нужен?

При передаче электрического тока на расстояние из-за сопротивления проводов теряется часть энергии. В таких случаях сопротивление является негативным фактором и его стараются свести к минимуму.

Другое дело электрические цепи в электронных устройствах. Там резистор выполняет много полезных функций. В электронных схемах используется свойства этих пассивных компонентов для ограничения тока в многочисленных цепях. С их помощью обеспечивается нужный режим работы усилительных каскадов.

Что такое резистор?

Название этого электронного элемента произошло от латинского слова resisto — сопротивляюсь. То есть – это пассивный элемент применяемый в электрических цепях, действие которого основано на сопротивлении току. Основной характеристикой этого электронного компонента является величина его электрического сопротивления.

Пассивность данного электронного компонента означает то, что основной его функцией является поглощение электрической энергии. В отличие от активных элементов электроники, он ничего не генерирует, а только пассивно рассеивает электричество, преобразуя его в тепло. В схемах замещения сопротивление является основным параметром, в то время как ёмкость и индуктивность – паразитные величины.

Применение

Резисторы применяются во всех электрических схемах для установления нужных значений тока в цепях, с целью демпфирования колебаний в различных фильтрах, в качестве делителей напряжений и т. п.

Резисторы выполняют функции нагрузки в резистивных цепях, используются в качестве делителя напряжения (см. рисунок ниже) и тока, являются элементами фильтров, применяются для формирования импульсов, выполняют функции шунтов и многое другое. Сегодня трудно себе представить электрическую схему, в которой не задействованы несколько резистивных элементов.

Рис. 1. Пример использования резисторов в схеме делителя напряжения

Без резисторов не работает ни один электронный прибор.

Устройство и принцип работы

Конструкция постоянных резисторов довольно простая. Они состоят из керамической трубки, поверх которой намотана проволока или нанесена резистивная плёнка с определённым сопротивлением. На концы трубки вставлены металлические колпачки с припаянными выводами для поверхностного монтажа. Для защиты слоя используется лакокрасочное покрытие.

Устройство таких элементов можно понять из рисунка 2 ниже.

В большинстве моделей такая конструкция традиционно сохраняется, но сегодня существуют различные виды сопротивлений с использованием резистивного материала, устройство которых немного отличается от конструкции описанной выше.

Рис. 2. Строение резистора

Современную электронную аппаратуру наполняют платы, начинённые миниатюрными деталями. Поскольку тенденция к уменьшению размеров электронных приборов сохраняется, то требования к уменьшению габаритов коснулись и резисторов. Для этих целей идеально подходят непроволочные сопротивления. Они просты в изготовлении, а их номинальные мощности хорошо согласуются с параметрами маломощных цепей.

Казалось бы, что эра проволочных резисторов постепенно уходит в прошлое. Однако это не так. Спрос на проволочные сопротивления остаётся в тех сферах, где транзисторы с металлоплёночным или с композитным резистивным слоем не справляются с мощностями электрических цепей.

Для непроволочных резисторов используются следующие резистивные материалы:

  • нихром;
  • манганин;
  • константан;
  • никелин;
  • оксиды металлов;
  • металлодиэлектрики;
  • углерод и другие материалы.

Перечисленные вещества обладают высокими показателями удельного сопротивления. Это позволяет изготавливать электронные компоненты с очень маленькими корпусами, сохраняя при этом значения номинальных величин.

Размеры и формы корпусов, проволочных выводов современных резисторов соответствуют стандартам, разработанным для автоматической сборки печатных плат. С целью надёжного соединения выводов способом пайки, выводы деталей проходят процесс лужения.

Конструкция регулировочных (рис. 3) и подстроечных резисторов (рис.4) немного сложнее. Эти переменные транзисторы состоят из кольцевой резистивной пластины, по которой скользит бегунок. Перемещаясь по кругу, подвижный контакт изменяет расстояние между точками на резистивном слое, что приводит к изменению сопротивления.

Рис. 3. Регулировочные резисторы Рис. 4. Подстроечные резисторы

Принцип действия.

Работа резистора основана на действии закона Ома: I = U/R , где I – сила тока, U – напряжение, R – сопротивление на участке цепи. Из формулы видно как зависят от величины сопротивления параметры тока и напряжения.

Читать еще:  Обозначения шлифовальных кругов по гост

Подбирая резисторы соответствующего номинала, можно изменять на участках цепей величины тока и напряжения. Например, увеличивая сопротивление последовательно включённого резистора на участке цепи, можно пропорционально уменьшить силу тока.

Условно резистор можно представить себе в виде узкого горлышка на участке трубки, по которой течёт некая жидкость (см. рис. 5). На выходе из горлышка давление будет ниже, чем на его входе. Примерно, то же самое происходит и с потоком заряженных частиц – чем больше сопротивление, тем слабее ток на выходе резистора.

Рис. 5. Принцип работы

Мы уже упомянули два типа резисторов, отличающиеся по конструкции: постоянные, у которых сопротивление статичное (допускается мизерное отклонение параметров при нагреве элемента) и переменные. К последним можно добавить подвид переменных сопротивлений (полупроводниковых резисторов) – нелинейные.

Сопротивление нелинейных компонентов изменяется в широких пределах под воздействием различных факторов:

  • изменения температуры (терморезисторы);
  • яркости света (фоторезисторы);
  • изменений напряжения (варисторы);
  • деформации (тензорезисторы);
  • напряжённости электрического поля (магниторезисторы);
  • от протекающего заряда (мемристоры).

За видом резистивного материала классификация может быть следующей:

  • проволочные резисторы (рис. 6);
  • композиционные;
  • металлоплёночные (рис. 7);
  • металлооксидные (характеризуются стабильностью параметров);
  • углеродные (угольный резистор);
  • полупроводниковые, с применением резистивных полупроводниковых материалов (могут быть как линейными, так и переменными).

Рис. 6. Проволочные резисторы Рис. 7. Постоянные плёночные SMD компоненты

Отличие плёночных smd компонентов от композиционных деталей состоит в способах их изготовления. Композиционные детали производятся путём прессования композитных смесей, а плёночные – путём напыления на изоляционную подложку.

В интегральных монокристаллических микросхемах методом трафаретной печати или способом напыления в вакууме создают встроенные интегральные резисторы.

По назначению сопротивления подразделяются на детали общего назначения и на компоненты специального назначения:

  • прецизионные и сверхпрецизионные (высокоточные детали с допуском отклонений параметров от 0,001% до 1%);
  • высокоомные (от десятков МОм до нескольких Том);
  • высокочастотные, способные работать с частотами до сотен МГц;
  • высоковольтные, с рабочим напряжением, достигающим десятков кВ.

Можно классифицировать детали и по другим признакам, например по типу защиты от влаги или по способу монтажа: печатный либо навесной.

Номиналы резисторов

Элементы имеют свой допуск в отклонениях номинальных сопротивлений. В соответствии с допусками номиналы резисторов разбиты на 3 ряда, которые обозначаются: Е6, Е12, и Е24.

Компоненты ряда Е6 имеют допуск отклонения ± 20%; ряда Е12 – ± 10%, а ряда Е24 – ± 5%.

Номиналы резисторов каждого ряда представлены в справочных таблицах, которые можно найти в интернете.

Маркировка

Раньше на корпусах сопротивлений проставляли номинал, ряд, мощность и серийный номер. В связи с миниатюризацией деталей перешли на цветовую маркировку. Параметры сопротивлений кодируют с помощью цветных колец (см. рис. 8).

Рис. 8. Цветовая маркировка

Если на корпусе присутствует 3 кольца, то первые два обозначают величину сопротивления, третье – множитель, а допустимое отклонение составляет 20%.

Если на корпусе 4 кольца, то значения первых трёх из них такие же, как в предыдущем примере, а четвёртое кольцо указывает на величину отклонения.

Пять колец: первые 3 указывают величину сопротивления, на четвёртой позиции – множитель, а на пятой – допуск.

На сверхточных деталях наносятся 6 цветовых полос: три первых указывают величину сопротивления, полоса на четвёртой позиции – множитель, а пятое кольцо — допустимое отклонение.

Каждому цвету присвоена конкретная цифра (от 0 до 9). Учитывая позицию кольца и его цвет, можно с точностью определить параметры изделия. Для этого удобно пользоваться таблицей цветов (рис. 9).

Рис. 9. Таблица цветов

В некоторых случаях вместо сопротивления используют обычные перемычки. Считается что у них нулевое сопротивление. Вместо перемычек иногда устанавливают резистор с нулевым сопротивлением (по сути та же перемычка, только адаптирована под размеры резистора). На корпус такого сопротивления наносят 1 чёрную полоску.

Маркировка SMD-резисторов

Сопротивления, предназначенные для поверхностного монтажа маркируют цифрами (см. рис. 10). Кодировка сложна для запоминания. В ней учитывается количество цифр и их позиции. Цифрами кодируют типоразмеры изделий и значения основных параметров. Для расшифровки кодов данного типа маркировки существуют справочные таблицы или калькуляторы.

Рис. 10. Цифровая маркировка

Код на рисунке расшифровывается так: номинальное сопротивление 120×10 6 Ом (последняя цифра показывает количество нулей, то есть степень числа 10). Резистор из ряда Е96 с допуском 1%, типоразмер 0805 либо 1206 (значения, выделенные курсивом, определяются по справочнику).

Обозначение на схемах

Традиционно резисторы на схемах обозначают в виде прямоугольника (по ГОСТ 2.728-74) или ломаной линии (рис. 12 — в основном на схема западного образца). В прямоугольнике иногда указывают мощность, используя для этого условные обозначения в виде вертикальных, косых или горизонтальных чёрточек (см. рисунок ниже):

  • I = 1 Вт;
  • II = 2 Вт;
  • III = 3 Вт;
  • – = 0.5 Вт;
  • = 0.25 Вт;
  • \ = 0.125 Вт.

Рис. 11. Обозначения резисторов по гост 2.728-74

Возле значка проставляют букву R и номинал резистора.

Рис. 12. Обозначение на схемах

В отличие от постоянных деталей, обозначение переменных резисторов имеет особенность: над прямоугольником добавляется стрелка, указывающая, что в конструкции детали есть скользящий контакт (бегунок).

Например, УГО потенциометра выгляди так:

Характеристики и параметры

Пределы границ сопротивлений для деталей общего назначения находятся в промежутке от 10 Ом до 10 МОм. Для таких компонентов номинальная мощность рассеивания составляет 0,125 – 100 Вт.

Сопротивление высокоомных деталей составляет порядка 10 13 Ом. Такие изделия применяются в измерительных устройствах, предназначенных для малых токов. Величины номинальных мощностей на корпусах таких компонентов могут не указываться. Рабочее напряжение от 100 до 300 В.

Класс высоковольтных деталей предназначен для работы под напряжением 10 – 35 кВ. Их сопротивление достигает 10 11 Ом.

Для высокочастотных резисторов важен номинал рабочей частоты. Они способны работать на частотах свыше 10 МГц. Высокочастотные токи сильно нагревают детали. При интенсивном охлаждении номинальные мощности таких компонентов достигают величин 5, 20, 50 кВт.

В точных измерительных и вычислительных устройствах, а также в релейных системах применяются прецизионные резисторы. Они обладают высокой стабильностью параметров. Мощность рассеивания у таких деталей не превышает 2 Вт, а номинальное сопротивление лежит в пределах 1 – 10 6 Ом.

Кроме основных характеристик иногда важно знать уровень напряжений шума, зависимость сопротивления реальных резисторов от нагревания (температурный коэффициент сопротивления) и некоторые другие.

Соединение резисторов

Сопротивления можно соединять двумя способами – параллельно либо последовательно.

  • Для параллельного соединения 2 резисторов имеем: R = (R1* R2) / (R1+R2).
  • При последовательном соединении 2 резисторов – общее сопротивление определяем по формуле: R = R1 + R2.

Для расчета последовательно и параллельно соединенных резисторов удобно воспользоваться нашими калькуляторами:

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector