3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Синтетические полимеры в строительстве

Синтетические полимеры

Полимеры относятся к классу химических соединений, у которых короткие структурные единицы, состоящие из нескольких атомов (мономеров), соединенных в длинные цепочки при помощи различного рода связей. Характерная особенность полимеров – большая молекулярная масса – от нескольких тысяч, до миллионов. Натуральные и созданные позже синтетические полимеры характеризуются следующими свойствами:

  • эластичность – способность выдерживать сильные деформирующие усилия без разрушения;
  • прочность;
  • способность макромолекул (молекулярных цепочек) к определенной ориентации по отношению друг к другу.

Точная классификация подразделяет многочисленное семейство полимеров на органические и неорганические. Наиболее востребованы, имеют большой ассортимент разновидностей с различными свойствами органические соединения, которые основаны на углеродных цепочках.

Одним из первых полимеров, созданным человеком на основе природных материалов, стала резина, производимая путем вулканизации каучука, и целлулоид, имеющий в основе целлюлозу.

Дальнейшее создание и производство полимерных материалов базировалось на достижениях органической химии.

Особенности

Синтетические полимеры имеют в своей основе низкомолекулярные органические соединения (мономеры), которые в результате реакций полимеризации или поликонденсации образуют длинные цепочки. Расположение и конфигурация молекулярный цепей, тип их связи во многом определяют механические характеристики полимеров.

Искусственные и синтетические полимеры обладают радом специфических особенностей. На первом месте следует отметить их высокую эластичность и упругость – способность противостоять деформациям и восстанавливать первоначальную форму. Пример – полиамид, резина. Полиуретановая нить – эластан, способна без разрыва изменять свою длину на 800 % и затем восстанавливать первоначальный размер. Наличие длинных молекулярных цепочек в структуре синтетических материалов обусловило низкую хрупкость пластиковых изделий. В большинстве случаев увеличение хрупкости у некоторых типов пластмасс происходит при понижении температуры. Органические материалы практически полностью лишены этого недостатка.

Отдельные типы пластиков, наоборот, имеют высокую жесткость и твердость. Стеклотекстолит по прочности мало уступает стали, а такой полимер, как кевлар, даже превосходит ее.

Указанные свойства дополняются высокой коррозионной стойкостью, износостойкостью. Большинство известных полимеров имеют высокое электрическое сопротивление, низкую теплопроводность.

Отмечая высокие эксплуатационные и технологические качества, нельзя забывать и про отрицательные стороны:

  • Сложность утилизации. Вторичное использование допускает только термопластичный материал и только в случае правильной сортировки. Смесь полимеров с различным химическим составом вторичной переработке не подлежит. В природе пластики разлагаются чрезвычайно медленно – вплоть до десятков и сотен лет. При сжигании некоторых типов пластмасс в атмосферу выделяется большое количество высокотоксичных веществ и соединений. Особенно это касается пластиков, содержащих галогены. Наиболее известный материал такого типа – поливинилхлорид (ПВХ).
  • Слабая устойчивость к ультрафиолетовому излучению. Под действием ультрафиолетовых лучей длинные полимерные цепочки разрушаются, увеличивается хрупкость изделий, снижается прочность, холодостойкость.
  • Трудность или невозможность соединения отдельных типов синтетических материалов.

Химические свойства полимеров показывают их высокую стойкость к агрессивным веществам, но в ряде случаев затрудняет использование клеевых составов. Поэтому для термопластичных полимеров используют метод сварки – соединение разогретых элементов. Некоторые вещества, например, фторопласты, вообще не подлежат соединениям, кроме механических.

Применение

Без преувеличения можно сказать, что полимеры нашли применение абсолютно во всех областях деятельности и жизни человека. Синтетические полимеры используются в быту и промышленности как самостоятельные изделия, так и в качестве замены традиционных материалов или в комплексе с ними для получения уникальных характеристик.

Первое применение нашли искусственные полимеры. Самый яркий пример – резина. В настоящее время основная часть резиновых изделий выполняется из синтетического каучука, но имеется несколько областей применения, где до сих пор используется резина из натурального каучука.

Полимеры обладают целым комплексом уникальных качеств, которых нет у традиционных материалов, или использование последних технологически и экономически нецелесообразно. Устойчивость к химическим реакциям в большом диапазоне температур и по отношению к большой группе активных химических соединений способствует большому распространению полимерных материалов в химии и химической промышленности.

Низкая токсичность, химическая устойчивость, отсутствие аллергических реакций позволило синтетическим полимерам найти широкое применение в медицине. Это искусственные органы, производство лекарств – от упаковок, до оболочек медицинских препаратов (таблеток, капсул), шовные материалы, клеи.

Пищевая упаковка из полимерных материалов

Те же самые качества используются и в пищевой промышленности для изготовления посуды, упаковочной тары для готовых продуктов и в процессе их производства. Себестоимость упаковки синтетической тары в несколько раз меньше, чем у картонной, бумажной или из иных натуральных материалов.

В промышленности высокомолекулярные полимерные соединения используются для производства конструкционных материалов, узлов трения, несущих конструкций, лаков и красок.

Благодаря превосходным электроизолирующим свойствам пластики практически полностью вытеснили натуральные материалы в электротехнической промышленности. Изоляция проводов, корпуса приборов, печатные платы изготавливаются на основе полимерных материалов. Жесткие обмоточные провода покрываются слоем синтетических лаков, при малой толщине обладающих высоким сопротивлением и прочностью, а гибкие монтажные проводники имеют оболочку из поливинилхлорида или полиэтилена, окрашенную в различные цвета для удобства обслуживании и ремонта.

На основе синтетических полимеров изготавливаются текстильные материалы большинства известных наименований. Ткани и одежда имеют в своем составе пряжу на основе полиамида, полиэстера, полипропилена. Как альтернатива натуральной шерсти выступает акрил, изделия из которого трудно отличить от натуральных.

Тот же самый полиамид, который служит заменой шелку, в монолитном состоянии имеет прочность, сравнимую со многими металлами. Если учесть, что полиамид, иначе называемый капрон или нейлон, химически инертен, а значит, не подвержен коррозии и имеет низкий коэффициент трения, то замена металлов синтетическими веществами вполне очевидна.

Еще более высокие качества имеют такие промышленные полимеры, как фторопласты – фторорганические соединения. Данные синтетические полимерные материалы имеют один из самых низких коэффициентов трения и самую высокую химическую устойчивость. Эти качества используются при производстве узлов трения, особенно в устройствах, работающих в агрессивной среде.

Когда нельзя произвести полноценную замену металлических конструкций искусственными материалами, выполняют покрытие металлической основы слоем пластика. Технологический процесс покрытия металла слоем пластика осуществляется таким образом, чтобы происходила связь основы и покрытия на молекулярном уровне. Этим достигается высокая прочность соединения.

Промышленные полимеры могут иметь самые различные виды. Используются как термопластичные материалы, так и термореактивные пластики. В первом случае для изготовления деталей и конструкций используется метод литья или прессовки при температуре размягчения полимера, а во втором пластмасса формируется непосредственно в виде готового изделия или полуфабриката с минимальной последующей обработкой.

Среди промышленных синтетических полимеров можно выделить композиционные материалы, в которых наполнителем или армирующей составляющей могут служить самые различные материалы, а связующим веществом выступает полимер.

Наиболее известны такие композиционные материалы:

  • Стеклопластик – стекловолокно или ткань на его основе, пропитанные эпоксидной полимерной смолой. Данный композит имеет высокую прочность, отличные электроизоляционные свойства, устойчивость к неблагоприятным факторам, высокую огнестойкость.
  • Углепластик – армирующим элементом здесь выступает углеродное волокно. Прочность и упругость конструкций из углепластиков, наряду с их легкостью (значительно легче металлов) послужили поводом для использования в аэрокосмическом направлении промышленности. Комплекс полезных качеств в этой области имеет более высокий приоритет, чем высокая стоимость, связанная с трудоемкостью получения углеродных волокон.
  • Текстолит – тканевый слоистый материал, в котором слои ткани пропитаны полимерным материалом. Ткань используется натуральная или искусственная. Самый прочный и надежный вариант – стеклотекстолит, использующий ткань из стеклянного волокна;
  • Порошковые композиты, имеющие наполнитель из порошкообразных материалов натурального или искусственного происхождения;
  • Газонаполненные материалы – вспененные полимеры. Это всем известный поролон, пенопласт, пенополиуретан. Газонаполненные материалы обладают чрезвычайно низкой теплопроводностью и используются в качестве теплоизоляционных материалов. Мягкость, пластичность наряду с прочностью послужили широкому распространению пенопластовых упаковочных материалов для нетяжелой, но требующей бережного обращения техники.

Классификация синтетических полимеров

Существует несколько классификационных групп полимеров, в зависимости от определяющего признака. В первую очередь, это:

  • Искусственные полимеры, созданные на основе природных органических полимеров (целлюлоза – целлулоид, каучук – резина);
  • Синтетические полимеры, в основе которых синтез из низкомолекулярных соединений (стирол – полистирол, этилен – полиэтилен).

По химическому составу деление таково:

  • Органические, имеющие в составе преимущественно углеводородные цепочки;
  • Элементоорганические, включающие в органические цепочки неорганические атомы (кремний, алюминий). Наиболее яркий пример – кремнийорганические композиции.

В зависимости от типов цепочек молекулярного состава, можно указать следующие виды структуры полимеров:

  • Линейные, у которых мономеры соединены в длинные прямые цепочки;
  • Разветвленные;
  • С сеточной структурой.

Варианты структуры полимеров

Все полимерные соединения по-разному характеризуются по отношению к температуре. Таким образом, их делят на две группы:

  • Термопластичные, для которых воздействие температуры оказывает обратимые изменения – нагрев, плавление;
  • Термореактивные, необратимо изменяющие свою структуру при нагреве. В большинстве случаев этот процесс происходит без стадии плавления.

Существует еще несколько типов классификации полимеров, к примеру, по полярности молекулярных цепочек. Но данная квалификация необходима только узким специалистам.

Многие типы полимеров используются в самостоятельном виде (полиэтилен, полиамид), но значительное количество применяется в качестве композиционных материалов, где выполняет роль связующего элемента между органической и неорганической основой – пластики на основе стеклянных или углеродных волокон. Часто можно встретить комбинацию полимер – полимер (текстолит, у которого полимерная ткань пропитана полимерным связующим).

Читать еще:  Схема установки кондиционера в квартире

Теплоизоляционные полимерные материалы в строительстве

Современный мир трудно представить без полимерных соединений. Они встречаются в любой сфере жизнедеятельности человека независимо от его проживания. Полимерные материалы настолько глубоко проникли в нашу жизнь, что мы уже не придаем значения тому, как она изменилась с их появлением. Одной из сфер, которая нуждается в использовании полимеров, является строительство.

Использование полимеров в строительстве

Применение полимерных изделий в качестве строительных, ремонтных и отделочных материалов уже давно не редкость. Сюда можно отнести обширный ассортимент продукции, например, утеплители, монтажные блоки системы «Термодом», армирующие сетки, крепежные и фиксирующие элементы, отделочные материалы (пластик, сайдинг, системы водоотливов, декоративные изделия и т.д.).

Если же добавить сюда внутреннюю отделку дома (пластиковые панели, полимерные наливные полы) или коттеджа, а также проведение коммуникаций (водопроводные и канализационные трубы), то полимерную продукцию можно перечислять бесконечно. Строительные материалы на основе полимеров обладают положительными свойствами, включая простоту проведения работ, качество и, главное, доступную цену.

Теплоизоляционные полимерные материалы – выбор современного человека

Теплоизоляционные полимерные материалы в строительстве занимают сегодня лидирующие позиции в процессе утепления жилого фонда, как новостроящегося, так и жилья на вторичном рынке. С учетом того, что в очень небольшом количестве районов Российской Федерации (в основном, это Южный округ) дома не требуют утепления по причине относительно теплых зим, значимость теплоизоляции для комфортного проживания человека трудно переоценить. К тому же современные строительные технологии практически исключают возведение толстых стен, которые, помимо удорожания объекта, никакой пользы не приносят. Поэтому утепление синтетическими материалами стало настоящим прорывом в современном строительстве.

На рынке наибольшей популярностью пользуются два вида утепляющих материалов:

  • Изделия на основе неорганических соединений. Чаще всего их называют минеральной или каменной ватой. Изготавливаются из различных соединений неорганики в ходе обработки в специальных условиях. К преимуществам данного материала относится экологическая безопасность, негорючесть, устойчивость к вредителям, особенно грызунам, широкий выбор форм (маты, рулоны). К недостаткам – гигроскопичность, сложность монтажа на вертикальных поверхностях (даже в случае плотных матов) и высокая цена.
  • Изделия на основе полимеров. Сюда относится всем известный пенопласт и еще множество продуктов химического синтеза. Главное преимущество полимерных утеплителей – это простота монтажа, огромный выбор типоразмеров (толщина, длина, ширина) и качественных характеристик, легкость. Нельзя не отметить ценовую доступность. Главным недостатком такой продукции является ее горючесть, однако при правильном монтаже и изоляции опасность возгорания сходит на нет. К тому же сегодня производители включают в состав антипиреновые добавки, что в разы снижает вероятность горения.

Полимерные теплоизоляционные материалы стали невероятно популярными и применяются в различных ситуациях – от загородного строительства до возведения небоскребов и промышленных объектов.

Теплоизоляционные материалы на основе полимеров

Если обратиться к сухому техническому языку, то полимерные теплоизоляционные материалы – это двухфазные газонаполненные системы, которые включают в себя полимерную матрицу и равномерно распределенную в ней газовую среду. Сочетание этих двух фаз наделяет материалы всеми необходимыми свойствами. Также немаловажное влияние на характеристики любого материала оказывает технология производства.

Классифицируются строительные материалы данной группы по таким показателям:

  1. В зависимости от показателя упругости:
    • Жесткие, куда относятся газонаполненные пластмассы. Из-за достаточно высокой стоимости в бытовом строительстве они применяются редко.
    • Эластичные. Более хрупкие изделия с низкой плотностью, куда можно отнести такой продукт, как пенопласт.
    • Полужесткие. Материалы со средними показателями прочности.
  2. В зависимости от пористости:
    • Пенистые или ячеистые пластмассы (пенопласты), которые имеют в своей структуре замкнутые поры.
    • Пористые пластмассы или поропласты, наделены системой обобщенных полостей.
    • Сотовые пластмассы, или сотопласты, имеющие в структуре пустоты (соты) и получаемые без процесса вспенивания.
  3. В зависимости от вида полимера:
    • Термопластические, которые синтезированы на основе пенополистирола, пенополивинилхлорида, пенопропилена и других полимеров с линейной или разветвленной структурой.
    • Термореактивные, в основе которых лежат фенолформальдегидные, полиуретановые, фурановые, эпоксидные, мочевиноформальдегидные полимеры с пространственной структурой.
  4. По способу изготовления:
    • Прессовые, которые получаются под воздействием давления.
    • Безпрессовые, производимые без давления извне.

В зависимости от того, к какой классификации относится тот или иной материал, он обладает различными физическими и эксплуатационными свойствами. Температура использования полимеров колеблется от -80 до 130°С.

Наиболее популярные виды полимерных утеплителей

Перечислить все виды полимерных утепляющих материалов в одной статье невозможно. Однако можно выделить самые популярные разновидности:

Благодаря химическим свойствам полиэтилена, материал может иметь пространственную или пористую структуру. Пространственный или сшитый пенополиэтилен обладает большей теплоизоляцией, устойчивостью к химическим реагентам, ультрафиолету, влаге и прочим воздействиям, чем его пористый аналог. Особую популярность пенополистирол приобрел в производстве отражающей изоляции – нового класса утеплителей. Этот рулонный материал с алюминиевым покрытием с одной стороны нашел широкое использование как утепляющий и отражающий материал в системах отоплениях, таких как «теплый пол» и прочие

  1. Пенополистиролы. Один из наиболее популярных утепляющих материалов на строительном рынке. Производится из полистирола беспрессовым и прессовым способом, а также методом экструзии. Метод экструзии является одним из наиболее эффективных, поскольку дает возможность получать материалы с высокой прочностью и в то же время с хорошей теплоизоляцией. Имеет закрытопористую структуру и устойчив к воздействию внешних факторов. Температура эксплуатации теплоизоляции на основе полистирола от -50 до +75°С. Выпускается пенополистирол в двух видах:
    • гранулы, применяемые в качестве засыпок, а также как наполнитель при производстве различных изделий в строительстве (например, строительные блоки с повышенной теплоизоляцией);
    • монолитные изделия, чаще всего листы, которые используются для обшивки и утепления вертикальных и горизонтальных поверхностей, включая утепление пола в случае применения материала высокой плотности.

  2. Пенополиэтилены. Эти материалы сочетают в себе множество качеств, включая тепло-, звуко-, гидро- и пароизоляцию. Обладают высокой упругостью и имеют замкнутую пористую структуру. Получают их двумя способами, в основе которых положен метод экструзии:
    • физическое вспенивание, которые основано на использовании фреона, бутана или другого сжиженного газа, который впоследствии заменяется воздухом;
    • химическое вспенивание, в основе которого лежит разложение порофора – особого химического реагента.

  3. Пенополипропилены. Аналогичный по технологии производства пенополиэтилену, но отличительный от него по своим свойствам материал. Получают его путем вспенивания полипропилена с возможным введением добавок и красителей, определяющих его технологические свойства. Материал имеет большую прочность и устойчивость к повышенным температурам, что позволяет использовать его в нагружаемых и нагреваемых конструкциях.
  4. Пенополивинилхлорид. Полимер, обладающий пониженной горючестью, за счет чего приобрел популярность на участках с повышенными температурами. Используют его как утеплитель в виде вкладышей в плитах перекрытий, стеновых панелях и различных перегородках. Получают прессовым и беспрессовым методом.
  5. Фенолформальдегидные полимеры. Одни из самых новых видов полимерных утеплителей, которые зачастую получают в ходе каталитической реакции поликонденсации. Выпускаются изделий в виде плит, блоков, рулонных материалов с различным защитным или изоляционным покрытием и т.д. Имеют очень высокий диапазон рабочих температур – от -180 до +150 С о .
  6. Пенополиуретаны. Достаточно молодой вид полимеров, получаемых на основе полиэфиров. Благодаря введению в структуру хлора, могут выдерживать высокие температуры. Высокая прочность, устойчивость к различным агрессивным факторам позволяют использовать их в грунте в качестве утеплителя фундаментов или трубопроводов. Элементы, которые подлежат утеплению, сразу заливают жидким пенополиуретаном еще на стадии производства, благодаря чему получается готовая к монтажу продукция.

Перечислить все виды полимерных утеплителей невозможно. Каждый конкретный случай требует своего подхода и выбора того или иного изолирующего материала. Сегодня в интернете можно без проблем подобрать нужный материал, ознакомившись с его характеристиками. Изучение минимального количества информации и помощь профессионального консультанта на сайте компании, занимающейся реализацией такой продукции, поможет сделать правильный выбор.

Разновидности полимеров и сферы их применения в строительстве

В настоящее время в строительстве широко применяются различные виды полимеров. Современные синтетические материалы с успехом используются при конструировании и отделке зданий и сооружений наряду с металлом, бетоном, древесиной, стеклом. В некоторых случаях полимеры выступают в качестве аналогов традиционных стройматериалов, но иногда уникальные свойства синтетических композитов делают их незаменимыми.

К полимерам относятся различные пластики АБС, ПВХ, поликарбонат, полиэтилен, полистирол, фторопласт, искусственный каучук, композитные составы с армирующими элементами из углеволокна, стекловолокна, стеклохолста, металла и так далее. В отличие от традиционных строительных материалов, нужные технические характеристики полимеров задаются при их производстве. В зависимости от конкретных требований синтетические материалы могут обладать различной прочностью, гибкостью, цветом, степенью прозрачности, стойкостью к температурным воздействиям.

Сферы применения полимеров в строительстве

Направления применения полимеров в строительстве чрезвычайно разнообразны. Часто один и тот же материал может использоваться в различных областях, например – в качестве звуко- и теплоизоляции, конструкционных и декоративно-отделочных элементов. Основные направления применения полимеров в строительстве следующие:

  • несущие и ограждающие конструкции;
  • теплоизоляция;
  • гидроизоляция;
  • полы и напольные покрытия;
  • инженерные коммуникации;
  • клеи, пены;
  • модифицирующие добавки.

Несущие и ограждающие конструкции

В современных несущих и ограждающих конструкциях широко применяются полимеры, обладающие высокой прочностью, пластичностью и низкой теплопроводностью. Основными направлениями использования полимеров являются: конструкции из полимербетона, композитные стойки, балки и арматура, многокамерные рамы для стеклопакетов, остекление из монолитного и сотового поликарбоната, светопрозрачное покрытие для теплиц, оранжерей и так далее.

Полимербетон. В настоящее время насчитывается около 30 видов полимерного бетона, обладающего различными свойствами. В зависимости от конкретных условий эксплуатации для изготовления полимербетона могут использоваться эпоксидные, фурановые, полиэфирные и другие виды искусственных смол. В сравнении с традиционным бетоном, полимербетон обладает более высокими эксплуатационными качествами и успешно противостоит воздействию агрессивных сред.

Например, раствор, изготовленный на основе полиэфирных и эпоксидных смол, отличается прочностными характеристиками. Применение в качестве заполнителя кварцевого песка, базальта, гранита придают смеси кислотостойкие свойства. Определенные виды связующих позволяют значительно увеличить срок службы бетона, повысить стойкость к различным излучениям, понизить хрупкость. Прочность полимербетона на сжатие может достигать 120 МПа, морозостойкость – до 300 циклов.

Основные области применения полимербетона в строительстве – фундаменты в грунтах с агрессивными водами, ремонт и восстановление железобетонных конструкций, трубы канализационных коллекторов, полы в промышленных зданиях, обладающие повышенными требованиями к износостойкости, маслостойкости, бензостойкости, электропроводности, электростатике и т.д.

Стеклопластик представляет собой композитный материал, состоящий из нескольких слоев пластика, армированных стекловолокном или стеклохолстом. Благодаря своей легкости (плотность материала не превышает 2 г/см3), прочности (до 1000 МПа на растяжение) и стойкости к механическим и химическим воздействиям, стеклопластик успешно применяется в качестве альтернативы стали в несущих конструкциях, емкостных сооружениях, трубопроводах. Светопрозрачные виды стеклопластика используются для вертикального и горизонтального остекления (кровли, балконы, лоджии).

Стеклопластик не подвержен разрушению в условиях температурных колебаний и солнечной радиации, обладает коррозионной стойкостью и не является средой для роста микроорганизмов. Благодаря этому, материал может успешно эксплуатироваться на открытом воздухе и в помещениях с наличием мокрых процессов. Вибрационная стойкость, ремонтопригодность и диэлектрические свойства обуславливают широкие возможности стеклопластика для применения в производственных зданиях и сооружениях.

Поликарбонат сотового и монолитного типов – один из самых популярных и востребованных полимерных материалов для остекления. Высокая степень прозрачности, прочность, экологическая и санитарно-гигиеническая безопасность, низкая травмоопасность позволяют с успехом применять поликарбонат в жилых, офисных и производственных зданиях, теплицах и оранжереях, спортивных сооружениях.

Прочность монолитного поликарбоната на порядок превосходит прочность обычного стекла. При этом он легок и удобен в обработке. Из монолитного поликарбоната изготавливают современное ударопрочное антивандальное остекление, прозрачные полы и стены. Профилированный монолитный поликарбонат применяется для устройства прозрачной кровли и навесов.

Прочность поликарбоната сотового типа немного ниже, чем у монолитного, но, при этом, стоимость материала также не высока. Дополнительные преимущества сотового поликарбоната – низкая теплопроводность, шумопоглощение. Материал широко применяется для устройства сплошного остекления оранжерей и теплиц, кровель спортивных сооружений, звукопоглощающих конструкций и ограждений.

Теплоизоляция

Теплоизоляционные материалы, в том числе, полимерные, занимают огромную нишу на современном строительном рынке. К наиболее востребованным синтетическим утеплителям относятся:

  • пенополистирол (пенопласт). В строительстве используется разновидность ПСС с антипиреном, понижающим горючесть;
  • экструдированный пенополистирол, в отличие от обычного пенопласта обладает высокой прочностью, долговечностью и более низкой степенью водопоглощения,
  • жесткий пенополиуретан, обладая закрытой пористой структурой, одновременно может использоваться и как гидроизоляция;
  • пенополиуретан напыляемого типа удобен для теплоизоляции конструкций в труднодоступных местах.

Синтетические теплоизоляционные материалы, в сравнении с минеральными, имеют меньший удельный вес, лучше противостоят воздействию влаги и хуже проводят тепло. Их общий недостаток – горючесть. Вследствие этого полимерная теплоизоляция не используется при устройстве вентилируемых фасадов. Для соблюдения противопожарных требований наружные стеновые ограждения, утепленные при помощи горючих материалов, должны быть оштукатурены специальными растворами.

Гидроизоляция

Полимерные материалы обладают отличными гидроизоляционными свойствами, в связи с чем входят в состав различных водозащитных систем, в том числе, окрасочного, обмазочного, оклеечного, штукатурного и проникающего типов. Наиболее известными видами полимерной гидроизоляции являются:

  • битумнополимерные составы для обмазки горизонтальных и вертикальных бетонных поверхностей, в том числе – заглубленных. Материал отлично защищает бетон от воздействия агрессивных подземных вод;
  • полимерные мембраны ПВХ, ТПО – современное техническое решение для гидроизоляции кровельных конструкций. Удобны, надежны, пригодны к ремонту. Армированные мембраны могут применяться как в качестве покрывного слоя кровельного пирога, так и в качестве нижнего слоя инверсионных кровель;
  • штукатурные гидроизоляционные составы, самым распространенным из которых является полимерный торкретбетон, являются надежной защитой для заглубленных железобетонных конструкций. Вследствие того, что материал наносится механическим способом, штукатурное покрытие отличается высоким качеством и скоростью нанесения;
  • проникающие составы – современный и прогрессивный способ гидроизоляционной защиты железобетонных конструкций. Одновременно состав увеличивает прочностные характеристики существующих сооружений из бетона.

Полимерные полы

Полимерные полы, называемые также наливными, позволяют создать идеально ровное покрытие на черновых конструкциях из бетона, древесины, металла. Образуемая в результате отверждения поверхность полимеров, не нуждается ни в какой дополнительной отделке. Наибольшее распространение наливные полы получили в производственных зданиях, торговых центрах, складских помещениях, медицинских и образовательных учреждениях.

Преимуществами наливных полов являются: высокая прочность, эстетические качества, износостойкость, герметичность, отсутствие пыления, химическая и биологическая инертность, искробезопасность. Срок службы материала в условиях интенсивной производственной эксплуатации составляет не менее 10 лет.

Наиболее распространены следующие виды полов из полимерных материалов:

  • полиуретановые. Отличаются устойчивостью к износу, динамическим и вибрационным нагрузкам. Используются в складских помещениях с работающими погрузчиками;
  • эпоксидные. Хорошо воспринимают ударные и механические нагрузки. Подходят для производственных помещений с мокрыми процессами и возможностью разлива химически агрессивных веществ;
  • полиметилметакрилатные. Монтаж таких полов может производиться при отрицательных температурах. Раствор быстро затвердевает и набирает эксплуатационную прочность.

Пол своему составу полимерные полы могут быть однокомпонентными и двухкомпонентными, а также иметь различные добавки, усиливающие те или иные свойства.

Инженерные коммуникации

Одно из самых обширных направлений использования полимерных материалов – инженерно-техническое оборудование зданий. Современные пластиковые и металлопластиковые трубопроводы отличаются надежностью, долговечностью, удобством монтажа, прочностью, ремонтопригодностью, стойкостью к механическим и химическим воздействиям. Полимеры используются во всех видах инженерных коммуникаций: водоснабжение, канализация, теплоснабжение, отопление, воздуховоды, гофры для силовых и слаботочных электрических сетей.

Наряду с «чистыми» полимерами (ПВХ, полиэтилен, полистирол и т.д.) для производства трубопроводов повышенной прочности используются композиционные материалы. Стеклопластик, сопоставимый по прочности со сталью, в 4 раза ее легче, не подвержен коррозии, не зарастает, стоит дешевле. Из него изготавливают коллекторы больших диаметров, прокладываемые под автодорогами с большой интенсивностью движения.

Полимерные клеевые составы и пены

Клеевые составы на базе полимерных соединений отличаются высокими адгезионными свойствами, водостойкостью. Используются для склеивания различных элементов из пластмасс, древесины, металла, бетона, стекла, керамики и других искусственных и природных материалов. Зачастую прочность соединения превышает прочность самих склеиваемых деталей.

Основные области применения полимерных клеевых составов – ремонт бетона и производство клееных деревянных конструкций. В связи с популярностью последних в состав клея вводятся добавки снижающие (и даже полностью исключающие) вероятность возгорания древесины. Популярностью пользуются также полимерные химические анкеры, для фиксации тяжеловесных металлических деталей в вертикальных и горизонтальных конструкциях из бетона и в кирпичной кладке.

Монтажные пены на основе пропан-бутановой и полиуретановой смесей – современное и технологичное решение для герметизации стыков строительных конструкций, удаления мостиков холода, гидроизоляции труднодоступных мест. Различают составы, увеличивающиеся в размерах в процессе отверждения и сохраняющие стабильность. Имеются более дорогие варианты для использования в условиях отрицательных температур и высокой влажности. К специальным видам пен относятся огнестойкие составы, служащие для герметизации проходок инженерных коммуникаций в ограждающих конструкциях с нормируемым пределом огнестойкости.

Модифицирующие добавки

Полимерные добавки способны значительно повысить эксплуатационные свойства традиционных строительных материалов, таких как бетон и древесина. В том числе, модифицирующие вещества усиливают:

  • прочностные характеристики материалов;
  • эластичность;
  • износостойкость;
  • водонепроницаемость;
  • сопротивляемость химическим и биологическим видам угроз;
  • адгезионные качества поверхности;
  • срок службы.

Например, прочность на сжатие и растяжение бетона с добавками из эпоксидных и полиэфирных смол, может увеличиваться в 10 раз, а его морозостойкость может доходить до 300 циклов. Бетон, армированный полимерной фиброй, отличается повышенной устойчивостью к различным видам деформаций, трещинообразованию, механическим и ударным воздействиям. Вследствие этого применяется при устройстве автодорог и полов в производственных зданиях с наличием интенсивных динамических и вибрационных нагрузок. Противоморозные добавки в бетон позволяют производить заливку монолитных конструкций при температуре до -5°С.

Модифицирующая обработка низкосортной древесины (береза, ольха, осина и др.) позволяет придать ей прочностные характеристики и долговечность таких пород, как дуб, ясень, бук. Пропитка структуры дерева фенолоформальдегидными, фурановыми и полиэфирными смолами увеличивает прочность на сжатие в 2-3 раза, прочность на изгиб поперек волокон – в 3-4 раза. Снижение показателя водопоглощения достигает двух крат и более. Конструкции из модифицированной древесины не подвержены порче насекомыми, грибком и плесенью.

Применение полимеров в строительстве

Полимеры широко применяются в различных областях человеческой деятельности, удовлетворяя потребности различных отраслей промышленности, сельского хозяйства, медицины, культуры и быта. При этом уместно отметить, что в последние годы несколько изменилась и функция полимерных материалов в любой отрасли, и способы их получения. Полимерам начали доверять все более ответственные задачи.

Сейчас в строительстве используют традиционные материалы, например бетон и сталь, для которых характерна низкая стоимость компонентов, и низкие возможности обработки. Использование полимерных материалов в строительстве дало:

– Сокращение итоговых расходов

– Устойчивость к коррозии

– Простота установки и обработки

– Простота технического обслуживания

При всем разнообразии особенностей для полимерных строительных материалов характерен и ряд свойств, определяющих условия рационального применения их в строительстве. Низкая прочность и относительно высокие прочностные показатели дают возможность создать директивный конструкции из пластмасс. Пластмассы — плохие проводники тепла и электричества. Поэтому они являются хорошими теплоизоляционными материалами и диэлектриками. В большинстве случаев, полимерные материалы устойчивы к кислотам, щелочам и другим хим. реагентам.

Они не требуют дополнительной защиты поверхности и могут быть окрашены в разные цвета. Многие пластические массы непроницаемы для воды, что обусловило их широкое применение для гидроизоляции зданий и сооружений, устройства кровель, трубопроводов. Низкая истираемость позволяет их широко применять для покрытия полов.

Пластмассы очень технологичны, т. е. легко перерабатываются в строительные изделия. Они легко поддаются механической обработке, склеиваются и свариваются.

Но необходимо учитывать и их недостатки, к ним относят, к которым можно отнести низкую теплостойкость, высокий температурный коэффициент линейного расширения, повышенную ползучесть, или способность воспламеняться или подвергаться деструкции под действием огня. Из-за незавершенности процессов образования полимеров, и входящих в их состав токсичных компонентов некоторые пластические массы имеют способность выделять в окружающую среду вредные вещества. Под действием солнечных лучей, повышенной температуры и кислорода в воздухе начинают быстро стареть, т. е. идет ухудшение физико-механических свойств.

Полимерные строительные материалы и изделия наиболее часто квалифицируют по виду полимера и области применения их в строительстве. Все многообразие пластмасс в зависимости от назначения их в строительстве сводится к следующим основным группам:

Материалы для покрытия полов

Низкая истираемость, гигиеничность, необходимые тепло- и звукоизоляционные свойства в сочетании с возможностью индустриализации строительных работ обусловили широкое применение полимерных материалов для покрытия полов.

Из всего объема рулонных, плиточных, мастичных и погонажных полимерных материалов для полов около 70% падает на долю поливинилхлоридного линолеума.

Линолеумы предназначены для устройства покрытий полов в жилых, общественных и некоторых промышленных зданиях. Применение этих покрытий в 5 — 7 раз сокращает длительность работ по сравнению с настилкой дощатых и паркетных полов. При правильной эксплуатации линолеумные полы могут прослужить 20-25 лет. Линолеумы выпускают без подосновы, а также на тканевой, войлочной и других видах подосновы. Наиболее массовыми являются одно- и многослойные линолеумы без подосновы. Они могут иметь поверхность, окрашенную в различные цвета, гладкую, с узором, блестящую, матовую, тисненую. Линолеумы изготавливают 3-мя способами: каланлровым, промазным и экструзионным.

В последние годы в строительстве все шире внедряют синтетические ковровые материалы (ворсолин, ворсонит и д. р. ) Для верха ковров используют тканные нетканые покрытия из синтетических волокон.

Ворсолин — нетканый двухслойный ворсовый материал. Его подосновой служит пленка из эмульсионного поливинилхлорида. Ковры ворсолина сваривают или склеивают в полотнища размером на комнату.

Ворсонит — Сырьем для него являются холсты из полиэфиров, полиамидов и других полимеров. Ворсонит отличается высоким декоративно-художественным, теплотехническим, и акустическим свойствами.

Плиточные материалы для полов являются менее полимероемкими, чем рулонные, и позволяют устраивать покрытия, различные по цвету и рисунку, легко ремонтируются.

Из пластмассовых плиток для полов основные — поливинилхлоридные и кумароновые. Эти виды плиток не рекомендуется применять в помещениях с повышенными тепловым и влажностным режимами эксплуатации и при возможном воздействии масел, жиров и образивных материалов.

Древесно-слоистые пластики (ДСП) — материалы, изготавливаемые в виде листов и плит горячим прессованием пакетов древесного шпона, пропитанного полимером. Технология производства ДСП включает подготовку древесного шпона, пропитку его полимером, сушку и сборку шпона в пакеты, прессирование и обрезку. ДСП по основным свойствам физико-механическим свойствам превосходят исходную древесину и используются для изготовления несущих конструкций, вспомогательных, крепежных и монтажных элементов.

Стеклопластики — пластмассы, содержащие в качестве упрочняющего наполнителя стекловолокнистые материалы. Прочность, легкость, низкая теплопроводность и другие ценные свойства определили широкое использование стеклопластиков в различных строительных конструкциях. Использование легких конструкций, изготовленных на основе стеклопластиков, позволяет снизить массу зданий в 16 раз по сравнению с кирпичными и в 8 раз по сравнению с крупнопанельными железобетонными зданиями. Стеклопластик в несколько десятков раз более стойки к ударным воздействиям, чем стекло, их прочность на изгиб и растяжении в 5 — 10 раз выше стекла, а плотность в 1,5 — 2 раза меньше. Светопропускаемость стеклопластиков может достигать 90% на толщину 1,5 мм, в том числе до 30% — в ультрафиолетовом спектре против 0,5 для обычного и силикатного стекла. Стеклопластики обладают теплопроводностью в 6 -10 раз более низкой, чем такие материалы, как керамика, бетон и железобетон. В строительстве стеклопластики применяют в виде плоских и волнистых листов для устройства светопрозрачной кровли промышленных зданий и сооружений; теплиц и оранжерей; малых архитектурных форм; трехслойных светопрозрачных и глухих панелей, ограждений и покрытий; оболочек и куполов; изделий трубчатого и коробчатого сечений; оконных и дверных блоков; санитарно-технических изделий, форм для изготовления бетонных и железобетонных изделий и др. Для стеклопластиков характерна высокая демпфирующая способность, они могут применяться в конструкциях, подвергаемых к действию вибраций.

Полимербетоны — композиционные материалы, получаемые на основе полимерного связующего, минеральных заполнителей и наполнителей.

Основные свойства полимербетонов определяются химической природой полимерного связующего, видом и содержанием наполнителя и заполнителей. Наиболее высокие физико-механические свойства полимербетоны имеют при использовании в качестве связующего эпоксидных смол. Однако сравнительно большая стоимость и дефицитность эпоксидных полимеров ограничивают возможность их применения. Для уменьшения расхода эпоксидных полимеров их модифицируют каменноугольной смолой. Наибольшее распространение получили полимербетоны на фурановых смолах, отверждаемых добавками сульфокислот. Свойства фурановых композиций улучшают, модифицируя их эпоксидными полимерами.

К достоинствам полимерных бетонов можно отнести их высокую износостойкость, кавитационную и химическую стойкость. Полимерные бетоны, содержащие 5-10% графитового наполнителя, имеют в 20 раз более высокую кавитационную стойкость, чем обычный бетон. Полимер бетоны можно усиливать металлической и неметаллической арматурой.

Полимерные бетоны применяют для возведения износостойких покрытий ирригационных плотин и конструкций портовых сооружений, для изготовления плит, установки химически стойких полов производственных зданий, сточных каналов, лотков и других конструкций , эксплуатируемых в условиях агрессивных сред; сооружения штатных стволов, кольцевых коллекторов подземных сооружений, химически стойких и дренажных труб; траверс ЛЭП, контактных опор и других конструкций с высоким электросопротивлением.

Гидроизоляционные и герметизирующие материалы. Трубы.

Из полимерных материалов для гидроизоляции особенно широкое применение получили пленки, мастики, лаки и краски. К пленочным относят рулонные материалы, толщиной до 1 мм, получаемые из полимеров путем экструзии, механического, пневмомеханического вытягивания и другими методами. Применение пленок позволяет улучшить условия труда при изоляционных работах, повысить их экономическую эффективность. В промышленности выпускают также полиизобутиленовые, полиамидные и другие пленки.

Гидроизоляционные мастики на основе термопластичных и термореактивных полимеров. Широкое применение получили битумно-полимерные пластики, для которого в виде главного компонента используют различные растворы или водные дисперсии каучуков.

Окрасочные гидроизоляционные составы на основе синтетических полимеров включают хлоркаучуковые, полиизобутиленовые, алкидные, полиуретановые, эпоксидные, силиконовые и т. п. Применять их можно для окраски поверхностей, на которые воздействуют минеральные масла и бензин. Кроме того, они пригодны для окраски помещений, где хранятся продукты и резервуары с питьевой водой.

Герметики — материалы и изделия, обеспечивающие влаго- и воздухонепроницаемость стыковых сопряжений строительных деталей и конструкций.

Мастичные герметики делятся на три группы:

1) Полимерные, нетвердеющие мастики на основе полиизобутилена. Они работают в том состоянии, в котором уложены в нее.

2) Герметики — эластомеры холодного отверждения. Их особенностью является, что после введения их в пастообразном состоянии встык под влиянием отверждающих добавок при температуре окружающей среды они переходят в эластичное резиноподобное состояние.

3) Битумно — полимерные герметики. Они применяются в горячем виде. Из-за своей дешевизны, высоких адгезионных и эксплуатационных свойств получили широкое распространение.

Погонажные герметики — это, как правило, пористые или пустотелые элементы, выполненные в виде жгутов различного поперечного сечения.

Оклеечные (рулонные) герметики представляют собой полосы из стеклоткани с нанесенным на них герметизирующим слоем мастики.

Трубы из полимерных материалов обладают преимуществами по сравнению с трубами из других материалов: легкостью, устойчивостью к электрохимической коррозии, гибкостью, высокими диэлектрическими свойствами. Постоянством пропускной способности, низкой теплопроводностью. Они просты в монтаже и не требуют защитных покрытий. Наибольшее распространение получили ПЭ, ПП, ПВХ трубы. Их применяют для устройства систем водоснабжения и канализаций, вентиляции внутренних коммуникаций химических и пищевых производств, ирригационных трубопроводов, газопроводов.

Для тепловой изоляции в строительстве применяют полимерные материалы, имеющие ячеистую структуру, которая может быть представлена системой изолированных ячеек (пенопласт), сообщающихся пор (пороплаты), регулярно повторяющихся полостей (сотопласты). Такое деление теплоизоляционных пластмасс условно, так как обычно не удается получить материал только с замкнутыми или открытыми ячейками. Полимерные теплоизоляционные материалы подразделяют на жесткие, полужесткие и эластичные. Для строительной теплоизоляции широко применяют жесткие пластмассы. Наиболее распространенная теплоизоляционная пластмасса — пенополистирол.

Полимерные материалы относят к числу наиболее эффективных строительных материалов. Они позволяют существенно снизить вес конструкции, широко внедрять индустриальные методы ведения строительных работ, обладают комплексом положительных особенностей, позволяющих расширить архитектурные возможности, изменить облик интерьеров, сокращать рудовые затраты. Превосходя по свойствам многие материалы, они требуют для производства в 2 — 4 раза меньше капитальных вложений. Каждая тонна пластмасс позволяет экономит в народном хозяйстве 5,6 т стали, 3,4 т цветных металлов, около 500 рублей капитальных вложений и трудозатрат.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector