106 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Проверка ротора на межвитковое замыкание

Построй свой Дом!

Проверка якоря на межвитковое замыкание

Электрические машины состоят из ротора и статора. Статор представляет собой неподвижные обмотки, уложенные в корпус. Якорь — это подвижная часть, поэтому на нее как правило попадают частички грязи и смазки и под воздействием температуры образуется окисленный налет. Он может послужить причиной неисправной работы или выхода из строя ротора электрической машины. Обнаруживается он визуальным осмотром. Нагар может стать причиной межвиткового замыкания в якоре. Как таковой, ротор электродвигателя при нормальных условиях эксплуатации не изнашивается. Со временем подлежат замене только токосъемные щетки, если их длина уже не соответствует допустимому размеру. Однако длительные нагрузки становятся причиной нагрева обмоток статора, что в результате и способствует образованию нагара. Межвитковое замыкание якоря может случиться при механических повреждениях. Недопустимо на трущихся поверхностях наличие сколов, вмятин, царапин и трещин. Замыкание между витками обмоток якоря происходит в случае выхода со строя подшипниковых узлов. Тогда якорь перекашивается, что приводит к повреждению ламелей. Еще одной причиной замыкания является воздействие влаги. При попадании капель воды на металлические поверхности начинается процесс коррозии. Ржавчина затрудняет вращение якоря, токовые нагрузки растут, происходит нагрев в следствии чего может отслаиваться припой, что в свою очередь при длительной эксплуатации может привести к межвитковому замыканию.

Диагностировать эту неисправность возможно и в домашних условиях. Проводят эту процедуру при помощи катушки индуктивности, называемую дросселем.

При помощи данного устройства, вам удастся узнать направление сброса, а также порядок, в котором катушки обмотки подключены к ламелям коллектора.

Таким образом, осуществляется проверка якоря на межвитковое замыкание.

Изготовить такой прибор своими руками совсем не трудно, достаточно ознакомится с содержанием нашей пошаговой инструкции.

Для сборки прибора , потребуется П — образное трансформаторное железо . Его можно извлечь из вибрационного насоса типа Малыш .

Разбираем конструкцию и достаем П — образное трансформаторное железо.Для этого п редварительно необходимо нагреть нижнюю часть насоса , чтобы полимер, которым залиты катушки, расплавился .

Далее при помощи подручного инструмента срезаем края на трансформаторном железе, как показано на фото. При обработке помните, что железо слоеное, поэтому все операции нужно выполнять внимательно, чтобы не образовались задиры. После на наждачном станке снимаем все острые кромки на изделии. Это необходимо для сохранения целостности эмаль-провода.

Соблюдать строгие размеры углов не обязательно, главное, чтобы якоря разных размеров легко располагались в приготовленом месте.

Следующим действием будет изготовление катушек. Чтобы выиграть в размере устройства и дроссель не оказался слишком громоздким, изготовим не одну, а две катушки, которые разместим по обеим сторонам П-образного железа. Для этого на понадобится:

  • картон;
  • мерительный инструмент;
  • карандаш;
  • острый нож;
  • ножницы.

Измеряем все размеры П-образного трансформаторного железа по их максимальным значениям. Далее переносим их на картон и вычерчиваем развертку корпуса будущей катушки. При этом обязательно нужно учесть размер паза сердечника. Далее тупым концом ножниц проводим по всем линиям перегиба. Это поможет изгибать картон без проблем. Вырезаем развертку. Таким же образом делаем выкройку на другую сторону. Теперь нам нужно подготовить крышки для катушек. Их понадобится 8 штук. Размечаем на картоне заготовки для крышек. Наружный контур вырезаем ножницами, внутренний острым ножом.

Далее склеиваем крышки с подготовленными развертками и получаем два остова будущих катушек.

Теперь необходимо намотать провод на катушки. Для этого воспользуемся расчетом трансформатора. Сначала определяем площадь сечения сердечника путем перемножения его длины и ширины. В нашем случае площадь составила 3,7 см х 2,2 см = 8,14 см 2 . Далее делим 13200/8,14=1621 виток. Это количество округляем до 1700 витков и поровну распределяем между двумя катушками, получается по 850 витков. Такое количество можно без проблем намотать в ручном режиме. При этом ошибка в 20-40 витков не повлияет на результат. Но все же лучше ошибиться в сторону увеличения. Перед началом наматывания необходимо сделать отверстия, в которые будут выходить концы провода. На свободный конец провода надевается термоусадочный кембрик. Конец провода вставляется в отверстие и далее идет процесс наматывания. По его окончании на другой конец припаиваем проводок с кембриком и вставляем в другое отверстие. Точно так наматываем вторую катушку.

После того , как обе катушки готовы , надеваем их на П — образный сердечник , при этом выводы проводов должны располагаться внизу с одной стороны . Важно , чтобы катушки были накручены идентично , витки направлены одинаково , а их окончания выведены в одну сторону . Далее следует соединение начал индукционных катушек и подача сетевого напряжения ( 220В ) на их концы .

Для тестирования самодельного дросселя воспользуемся прибором заводского изготовления. Сначала проверим якорь на межвитковое замыкание промышленным устройством и места прилипания пластины пометим мелом. При проверке ротора нашим дросселем пластина будет примагничиваться в тех же местах. Подведем итоги, прибор выполнен правильно, результаты идентичны.

Снимаем катушки с сердечника и изолируем изолентой. Ставим их обратно припаиваем питание. Дроссель готов к эксплуатации, можно приступать к проверке наличия межвиткового замыкания в якоре.

Для этого необходимо включить изготовленное нами устройство, в его вырез уложить якорь и не спеша повернуть его.

Проверка межвиткового замыкания при помощи аналогового тестера

Впрочем проверить якорь на межвитковое замыкание можно и при помощи мультимера. В этом случае удастся только узнать есть обрыв в обмотках якоря или нет. Более точным прибором будет аналоговый тестер. С его помощью замеряем сопротивление между каждыми двумя ламелями. Оно должно быть идентичным. После устанавливаем прибор на 200 кОм, Один щуп замыкаем на массу , а другой прикладываем к каждой ламели. Если якорь не звонится на массу то он скорее всего исправен или его нужно проверить при помощи дросселя.

Индикатор для обнаружение межвиткового замыкания якоря

Для обнаружение межвиткового замыкания якоря можно использовать нехитрый индикатор который можно собрать по приведенной ниже схеме.

Читать еще:  Как переделать акб шуруповерта на литий

Для того чтобы спаять такой элементарный индикатор понадобится немного денежных средств, свободное время и ваши руки.

Приобретаем 5 транзисторов, 8 резисторов, 4 конденсатора, 2 светодиода и батарейку. Кроме того самостоятельно наматываем две катушки.

Подготавливаем печатную плату и собираем прибор. Выполнять проверку межвиткового замыкания с помощью такого индикатора очень удобно. Весомым аргументом в пользу прибора является то, что ним можно без проблем находить межвитковое замыкание и на статорах как указано ниже в видео.

Если на якоре обнаружено межвитковое замыкание, что делать?

Нужно проверить все, если металлическая линейка притягивается в определенном пазу, это значит, что его катушках имеет место быть межвитковое замыкание.

Кроме того, внимательно просмотрите коллектор.

Если между его ламелями возникает замыкание, это также говорит о наличии межвиткового замыкания.

Чаще всего в таких ситуациях приходится полностью перематывать якорь, поскольку даже одна обмотка без нанесения повреждений остальным представляется весьма проблематичной.

Кроме того, узнать о наличии межвиткового замыкания можно, просто тщательно осмотрев провод и шинки якоря.

Например, при этом может быть обнаружено, что витки помяты или согнуты, а также что между ними виднеются различного рода частицы, проводящие ток, например, припой, протекший после пропайки.

В таком случае поломку можно ликвидировать, удалив инородные тела или исправив помятости на шинке.

Поэтому, якоря на межвитковое замыкание чинить намного проще, чем, кажется.

Кроме того, рекомендуется покрыть детали лаком после устранения замыкания.

Помимо всего прочего, еще одним признаком наличия межвиткового замыкания является искрение щеток.

Речь идет о ситуациях, когда наблюдаются местные нагревы обмотки.

Таковы основные признаки, по которым можно обнаружить межвитковое замыкание в якоре.

А так же вы можете посмотреть видео проверка якоря стартера

Индикатор межвитковых замыканий ротора

Всем доброго времени суток. Предлагаю вашему вниманию свой вариант реализации довольно популярной и простой схемы индикатора межвитковых замыканий в роторах коллекторных электродвигателей.

На просторах интернета описано множество вариантов изготовления аналогичных схем собранных с использованием разных комбинаций транзисторов и одинаковым принципом работы.

Основные идеи были:
1. Собрать данное устройство из имевшихся после разборки разного электронного хлама деталей.
2. Сделать законченную конструкцию, т.е. включая корпус.
3. При изготовлении избавить себя от поиска или самостоятельной намотки катушек индуктивности, указанных в найденных схемах номиналов, а использовать те, которые имелись под рукой!
4. Провести сравнительное тестирование конструкции с оборудованием заводского изготовления.

Из инструментов использовалось:
– МФИ типа «Dremel».
– Паяльник.
– Суперклей.
– Отвертка, кусачки и т.д.

Поскольку в найденных мною в интернете схемах используются катушки с разной индуктивностью, в идею эксперимента входило заставить нормально работать две катушки с одинаковыми номиналами. По этому для начала схема собиралась и тестировалась на макетной плате. Настраивалась с использованием оборудования времен еще СССР.

Принципиальная схема устройства, согласно использованных деталей.

В схеме были использованы катушки от двух одинаковых люминесцентных лампочек «ЭРА» (давно валялись без дела, пользуюсь светодиодными). Т.к. у меня не было под рукой LC-метра, а вычислять параметры другими способами не было желания, то их индуктивность мне пока не известна.



В описаниях, найденных в интернете, аналогичных схем устройств указывались разные рабочие частоты от 30кГц до 120кГц. Подбором частотозадающего конденсатора C1 удалось добиться синусоиды относительно правильной формы на излучающей катушке L1. Рабочая частота получилась около 91кГц.

На приемной катушке L2 сигнал имел искажения в виде неравномерной синусоиды и «зюки» на ней. Или за счет взаимных наводок, или из-за появления гармоники (не стал глубоко вникать).

Используя метод «научного тыка», параллельно приемной катушке был установлен конденсатор C5 (который отсутствует в аналогичных схемах), исходя из идеи C5=C1. Который откорректировал приемный LC контур под рабочую частоту. В результате на приемной катушке поднялась амплитуда сигнала и выровнялась форма синусоиды, что значительно повысило чувствительность прибора.

Расстояние между катушками подбиралось минимальным, при котором нет сильной прямой наводки между катушками, при условии отсутствия рядом замкнутого проводника (для удобства проверки относительно коротких якорей).


Печатная плата делалась с возможностью установки катушек на расстоянии 21мм и 27мм между их центрами (для удобства возможного эксперимента с разными катушками). Так же на плате оставлены свободные поля для удобства монтажа платы в корпусе.

Печатная плата выполнена на куске одностороннего фольгированного стеклотекстолита размерами 109х28мм.

Монтаж на плате получился не очень презентабельного вида, т.к. использовался кусок стеклотекстолита, валявшийся у меня еще с советских времен. Видимо от времени, у него внутри образовались непонятные разводы и пятна бурого цвета, которые меня сильно смущали, но не повлияли на работоспособность приборчика.



Корпус приборчика был изготовлен из корпуса сгоревшего пускорегулятора от люминесцентной лампы.


С помощью МФИ типа «Dremel» установленного в самодельный станок, верхняя часть корпуса была обрезана по краю отверстий для проводов. Сточены мешающиеся ребра. Надфилями подогнана нижняя часть корпуса.



Далее в корпус с помощью суперклея были вклеены пластиковые опоры для платы и вырезаны отверстия для переключателей, светодиодов и отверстия для доступа к подстроечным резисторам. Потом просверлены отверстия под саморезы 3мм для скрепления корпуса.


В результате получился достаточно удобный корпус размерами 113х33х17мм. Который легко разбирается для замены батарейки. Отверстия для регулировки можно заклеить кусочком изоленты.



Для удобства эксплуатации приборчика стрелками на наклейке указаны местоположения центров катушек индуктивности. Красными точками на корпусе указаны центры катушек.

Сначала приборчик проверялся дома на имевшемся якоре, где кусочком провода был имитирован замкнутый виток. Так же устройство прекрасно реагирует на любой кусочек замкнутого провода (т.е. без наличия сердечника). Прибор очень чуствительный и реагирует на любой замкнутый проводник включая оправу очков, кольцо для ключей и т.д. По этому очень удобно иметь два заранее настроенных диапазона чуствительности.

Читать еще:  Настройка каналов на спутниковом тюнере



Так же результаты проверки якорей этим приборчиком сравнивались с результатами полученными на специализированном оборудовании фирмы «Bosch» в условиях мастерской.


Результатами сравнительной диагностики якорей на КЗ я остался очень доволен т.к. они полностью совпали. Приборчик уверенно показывал наличие КЗ на «убитых» якорях и не показывал ложных срабатываний на «здоровых».

Уже после тестирования в мастерской. Экспериментируя с уже готовым приборчиком, обнаружилась интересная возможность настройки не только двух режимов чувствительности приборчика, но и двух разные режимов работы:
1. При включении горит зеленый, при проверке «здорового» якоря продолжает гореть зеленый, при наличии КЗ на якоре загорается красный, при этом срабатывает на простой кусок замкнутого провода, не реагирует на металлическую поверхность.
2. При включении горит красный, при проверке «здорового» якоря загорается и горит зеленый, при наличии КЗ на якоре загорается красный, при этом не срабатывает на простой кусок замкнутого провода, реагирует на металлическую поверхность загорается зеленый.

В мастерской приборчик тестировался в первом режиме. Как оказалось, благодаря наличию переключателя и двух подстроечных резисторов, приборчик можно настроить либо на два уровня чувствительности или на два разных режима работы.

Если что-то в описании упущено, надеюсь, эти нюансы можно рассмотреть на представленных фото. Заранее прошу прощения за возможные ошибки и опечатки.

Если нужна дополнительная информация, пишите на почту, постараюсь обязательно ответить. Отзывы, идеи, предложения по улучшению конструкции и комментарии очень приветствуются.

Проверка статора и ротора электроинструментов на межвитковое замыкание

Чтобы проверить статор и ротор на межвитковое замыкание мультиметром, не потребуется много времени. Дольше придется разбирать двигатель. Болгарка, дрель, перфоратор – каждый инструмент можно отремонтировать, определив неисправность. Проверку лучше разбить на несколько основных этапов, и последовательно не спеша выполнять действия.

Разборка болгарки

Чтобы проверить замыкание на статоре и роторе, нужно разобрать двигатель бытового инструмента. Рассмотрим выполнение этой операции для поиска неисправности болгарки.

  • снимаем защитный кожух, открутив один винт на хомуте;
  • откручиваем 4 винта и отсоединяем редуктор с двигателем от рукоятки болгарки;
  • затем со стороны редуктора отвинчиваем 4 болта и отсоединяем редуктор, вместе с ротором двигателя;
  • статор у нас остался в корпусе подсоединенным к кнопке включения и питания.

Разобрав и отсоединив необходимые для проверки детали, переходим к их внешнему осмотру проверке на межвитковое замыкание.

Внешний осмотр

Обнаружить неисправность можно при неравномерном нагреве корпуса инструмента. Касаясь рукой, вы ощущаете перепад температуры в разных местах корпуса. В этом случае инструмент необходимо разобрать и проверить его тестером и другими способами.

При возникновении замыкания витков статора и поиска неисправностей, в первую очередь проводим осмотр витков и выводов. Как правило, при замыкании увеличивается сила тока, проходящая по обмоткам, и возникает их перегрев.

Возникает большее замыкание витков в обмотках статора и повреждается слой изоляции. Поэтому начинаем определение неисправностей проведением визуального осмотра. Если прожогов и поврежденной изоляции не обнаружено, то переходим к выполнению следующего этапа.

Возможно причина поломки в неисправности регулятора напряжения, возникающая при увеличении токов возбуждения. Для обнаружения проблемы проверяются щетки, они должны быть сточены равномерно и не иметь сколов и повреждений. Затем следует выполнить проверку с помощью лампочки и 2 аккумуляторов.

Применение мультиметра

Теперь надо проверить возможность обрыва обмоток статора. На шкале мультиметра выставляем переключатель в сектор замера сопротивления. Не зная величину измерения, выставляем максимальное значение величины для вашего прибора. Проверяем работоспособность тестера.

Касаемся щупами друг друга. Стрелка прибора должна показывать 0. Проводим работу, касаясь выводов обмоток. При показании бесконечного значения на шкале мультиметра обмотка неисправная и статор следует отдать в перемотку.

Проверяем возможность короткого замыкания на корпус. Такая неисправность вызовет снижение мощности болгарки, возможность поражения электротоком и увеличения температуры, при работе. Работа проводится по той же схеме. Включаем на шкале замер сопротивления.

Красный щуп располагаем на выводе обмотки, черный щуп крепим на корпус статора. При коротком замыкании обмотки на корпус на шкале тестера значение сопротивления будет меньшим, чем на исправной. Эта неисправность требует перемотки обмоток статора.

Настало время провести замеры и проверить, есть ли межвитковое замыкание обмотки статора. Для этого измеряется значение сопротивления на каждой обмотке.

Определяем нулевую точку обмоток, замерив сопротивление для каждой из них. При показании на приборе наименьшего сопротивления обмотки, ее следует менять.

Нестандартная проверка

Самым точным способом является проверка статора с помощью металлического шарика и понижающего трансформатора тока. Статор подключается к выводам трех фаз из трансформатора. Проверив правильность подключения, включаем нашу цепь с пониженным напряжением в сеть.

Внутрь статора вбрасываем шарик и наблюдаем за его поведением. Если он «прилип» к одной из обмоток – это значит, на ней произошло межвитковое замыкание. Шарик крутится по кругу – статор исправен. Довольно ненаучный, но действенный метод обнаружения межвиткового замыкания на статоре.

Неисправности ротора

В случае оптимального режима использования, ротор не изнашивается. Производятся регламентные работы с заменой щеток при их износе. Но со временем, при сильных нагрузках статор нагревается и образуется нагар. Самая частая механическая поломка – износ или перекос подшипников.

Работать болгарка будет, но при этом быстро изнашиваются пластины, и со временем двигатель ломается. Чтобы избежать поломок, необходимо проверять инструмент и поддерживать нормальные условия службы.

Влага при попадании на металл вызывает образование ржавчины. Повышается сила трения, силы тока требуется больше для работы. Происходит значительный нагрев групп контактов, припоя, появляется сильная искра.

Проверка обмоток двигателя

Электронный тестер роторов – это стандартный цифровой мультиметр. Прежде чем приступать к тестированию замыкания, следует проверить мультиметр и его готовность к работе. Переключатель выставляют на измерение сопротивления и касаются щупами друг друга. Прибор должен показать нули. Выставляют максимальную величину измерения и проводят проверку:

Читать еще:  Ремонт старой ручной механической дрели

  • сначала следует проверить ротор на обрыв цепи. Прикасаясь черным щупом к контактному кольцу, красным нужно прозвонить обмотки. Стрелка прибора зашкалила, значит, обмотка имеет обрыв цепи витков. Ротор следует отдавать в перемотку;
  • замеряем сопротивление для определения возможности короткого замыкания на корпус. На контактное кольцо крепим черный щуп, красным следует прозвонить на замыкание корпус ротора. В случае низкого показания значения сопротивления и звукового сигнала, такой якорь необходимо отдавать в ремонт;
  • проведение прозвона на межвитковое замыкание витков ротора. Подкрепляем щупы на контактные кольца якоря. При значении на шкале прибора, от 1,5 Ом до 6 Ом, мы проверяли исправный прибор. Все другие значения на шкале означают неисправность мультиметра.

На этом проверка ротора закончена. Следует еще раз напомнить основные этапы определения неисправности. Прежде чем проверять, болгарку или любой другой прибор следует обесточить.

Перед проведением замеров, следует визуально осмотреть корпуса, изоляцию и отсутствия нагаров на статоре и роторе.

Необходимо очищать поверхности контактов от засоров пылью и грязью. Загрязнение приводит к увеличению тока при потере мощности двигателя.

При разборке инструмента в первый раз, записывайте все свои шаги. Это позволит иметь подсказку в следующий раз, избежать появления лишних деталей при сборке. При выходе щетки за край щеткодержателя менее 5 мм, такие щетки следует заменить.

Проверить межвитковое замыкание можно электронным тестером, то есть мультиметром.

Как определить межвитковое замыкание в двигателе

Добрая половина всех случаев неисправностей электродвигателей приходится на межвитковое замыкание. Межвитковым замыканием называется короткое замыкание между разными витками одной катушки или секции обмотки электрической машины. Причин межвитковых замыканий может быть несколько.

Причины межвитковых замыканий

Одна из причин межвиткового замыкания — перегрузка электродвигателя по току, когда нагрузка на двигатель в течение значительного промежутка времени превышает номинальную. В этом случае обмотка статора разогревается от чрезмерного тока настолько сильно, что изоляция в каком-то ее месте может разрушиться и способствовать короткому замыканию между соседними витками. Нормальный ток статора под нагрузкой всегда можно посмотреть в паспорте двигателя либо на информационном шильдике на его корпусе.

Перегрузка может случиться, например, из-за нештатного режима эксплуатации оборудования, приводимого в действие данным двигателем. Кроме того причиной токовой перегрузки может стать механическое повреждение непосредственно двигателя: заклинивание ротора, стопорение подшипников и т. д.

Не исключен также заводской брак обмотки, либо нарушение целостности изоляции во время ручной перемотки статора в кустарных условиях. При несоблюдении условий хранения или эксплуатации электродвигателя, случайно попавшая внутрь влага способна навредить изоляции и привести к межвитковому замыканию.

Так или иначе, какой бы ни оказалась причина межвиткового замыкания, с ним пострадавший двигатель нормально работать уже точно не сможет, либо проработает, но недолго. Поэтому при обнаружении симптомов межвиткового замыкания, следует незамедлительно начать его поиск с целью скорейшего устранения.

Как выявить межвитковое замыкание

Существует несколько простых проверенных способов выявить наличие межвиткового замыкания. Симптомом обычно является перегрев одной части статора по отношению ко всем остальным его частям. Если данное явление наблюдается, то двигатель необходимо остановить, если надо – снять с оборудования, и подвергнуть точной диагностике.

Прежде всего можно воспользоваться токовыми клещами. Достаточно по очереди измерить токи каждой из фаз обмотки статора, и если в одной из них ток существенно больше чем в остальных, то это – явный признак того, что место замыкания находится в соответствующей части обмотки. Предварительно необходимо убедиться, что напряжение на все выводы (между каждой парой из трех фаз) подается одинаковое, то есть проверить отсутствие перекоса фаз. Для этого пользуются вольтметром, поочередно измеряют напряжения на трех фазах.

Три части трехфазной обмотки следует прозвонить омметром. Сопротивления всех трех обмоток по-отдельности должны быть одинаковыми. Используемый прибор должен обладать достаточно высокой точностью, ведь если имеет место замыкание всего между двумя витками, то различие в сопротивлениях будет минимальным, и его невозможно будет различить если обмотка выполнена толстым проводом.

Наличие замыкания на корпус можно проверить при помощи мегаомметра. Для этого один щуп прибора прикладывается к корпусу двигателя, второй — поочередно к каждому из выводов обмоток. В исправном двигателе сопротивление на каждой из фаз должно быть значительным (смотрите – Как правильно пользоваться мегаомметром ).

Не будет лишним визуально рассмотреть обмотку статора. Чтобы это сделать, нужно будет снять с двигателя крышки, вытащить ротор и внимательно рассмотреть всю обмотку секция за секцией. Если замыкание есть, то подгоревшее место наверняка будет видно сразу.

Если у вас под рукой есть понижающий трехфазный трансформатор на напряжение в районе 40 вольт, то используйте его для проверки целостности статора. Выньте ротор, подключите трансформатор, включите его в сеть. Возьмите железный шарик от подшипника и запустите его в статор, немного ускорив щелчком пальца, так чтобы шарик начал бегать по кругу вслед за вращающимся магнитным полем, имитируя вращение ротора. В случае если шарик остановился и застрял на одном месте статора — значит в этом месте межвитковое замыкание.

Если нет шарика, возьмите пластину трансформаторной стали или железную линейку, приложите ее внутри к статору и перемещайте по кругу. В том месте где пластинка начнет заметно дребезжать — есть межвитковое замыкание. Если межвиткового замыкания нет, то пластинка будет везде примагничиваться к статору. Прежде чем использовать способ с шариком или с пластинкой, убедитесь, что двигатель питается от понижающего трансформатора, иначе можно получить поражение электрическим током.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: