0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Область применения подшипников качения

Подшипники качения. Общие сведения. Классификация и область применения

Подшипники качения, как и подшипники скольжения, предназначены для поддержания вращающихся осей и валов.

Электродвигатели, подъемно-транспортные и сельскохозяйственные машины, летательные аппараты, локомотивы, вагоны, металлорежущие станки, зубчатые редукторы и многие другие механизмы и машины в на­стоящее время немыслимы без подшипников качения.

Подшипники качения состоят из двух колец — внутреннего 1 и наруж­ного 3, тел качения 2 (шариков или роликов) и сепаратора 4 (рис. 16, а). В зависимости от: формы тел качения различают подшипники шариковые (рис. 16, д, б, ж, и) и роликовые (рис. 16, в, г, е, з, к). Разновидностью роликовых подшипников являются игольчатые подшипники (рис. 16, д).

Основными элементами подшипников качения являются тела каче­ния — шарики или ролики, установленные между кольцами и удерживае­мые сепаратором на определенном расстоянии друг от друга.

Материалы. Материалы подшипников качения назначаются с учётом высоких требований к твёрдости и износостойкости колец и тел качения. Здесь используются шарикоподшипниковые высокоуглеродистые хромистые стали ШХ15 и ШХ15СГ, а также цементируемые легированные стали 18ХГТ и 20Х2Н4А. Твёрдость колец и роликов обычно HRC60. 65, а у шариков немного больше – HRC62. 66, поскольку площадка контактного давления у шарика меньше. Сепараторы изготавливают из мягких углеродистых сталей либо из антифрикционных бронз для высокоскоростных подшипников. Широко внедряются сепараторы из дюралюминия, металлокерамики, текстолита, пластмасс.

Для обеспечения нормальной и долговечной работы подшипников ка­чения к качеству их изготовления и термической обработке тел качения и колец предъявляют высокие требования.

Подшипники качения — это опоры вращающихся или качающихся де­талей. Подшипники качения в отличие от подшипников скольжения стан­дартизованы. Подшипники качения различных конструкций (диапазон на­ружных диаметров 1,0-2600 мм, масса 0,5-3,5 т, например, микроподшип­ники с шариками диаметром 0,35 мм и подшипники с шариками диаметром 203 мм) изготовляют на специализированных подшипниковых заводах.

Выпускаемые в СНГ подшипники качения классифицируют по способности воспринимать нагрузку — радиальные, радиально-упорные, упор­но-радиальные и упорные.

Рис. 16. Подшипники качения: а, б, в, г, д, е — радиальные подшипники; ж, з — радиально-упорные подшипники; и, к — упорные подшипники; 1 — внутреннее кольцо; 2 — тело ка­чения; 3 — наружное кольцо; 4— сепаратор

Радиальные подшипники (см. рис. 16, а-е) воспринимают (в основ­ном) радиальную нагрузку, т. е. нагрузку, направленную перпендикулярно к геометрической оси вала.

Упорные подшипники (см. рис. 16, и, к) воспринимают только осе­вую нагрузку.

Радиально-упорные (см. рис. 16, ж, з) и упорно-радиальные подшип­ники могут одновременно воспринимать как радиальную, так и осевую на­грузку. При этом упорно-радиальные подшипники предназначены для пре­обладающей осевой нагрузки.

В зависимости от соотношения размеров наружного и внутреннего диа­метров, а также ширины подшипники делят на серии: сверхлегкую, особо легкую, легкую, среднюю, тяжелую, легкую широкую, среднюю широкую.

В зависимости от серии при одном и том же внутреннем диаметре кольца подшипника наружный диаметр кольца и его ширина изменяются.

По классам точности подшипники различают следующим образом:

«0» – нормального класса;

«6» – повышенной точности;

«5» – высокой точности;

«4» – особовысокой точности;

«2» – сверхвысокой точности.

При выборе класса точности подшипника необходимо помнить о том, что «чем точнее, тем дороже».

По форме тел качения подшипники делят на шариковые (см. рис. 16, а, б, ж, и), с цилиндрическими роликами (см. рис. 16, в), с кониче­скими роликами (см. рис. 16, з, к), игольчатые (см. рис. 16, д), с витыми роликами (см. рис. 16, е), с бочкообразными роликами (сферическими) (см. рис. 16, г). Тела качения игольчатых подшипников тонкие ролики — иглы диаметром 1,6-5 мм. Длина игл в 5-10 раз больше их диаметра. Се­параторы в игольчатых подшипниках отсутствуют.

По числу рядов тел качения различают однорядные (см. рис. 16, а, в, д-к) и двухрядные (см. рис. 16, б, г) подшипники качения.

По конструктивным и эксплуатационным признакам подшипники делят на самоустанавливающиеся (см. рис. 16, б, г) и несамоустанавливающиеся (см. рис. 16, а, в, д-к).

Под типом подшипника понимают его конструктивную разновидность, определяемую по признакам классификации.

Каждый подшипник качения имеет условное клеймо, обозначающее тип, размер, класс точности, завод-изготовитель.

На неразъемные подшипники клеймо наносят на одно из колец, на разборные — на оба кольца, например, на радиальный подшипник с ко­роткими цилиндрическими роликами (см. рис. 16, в), где наружное коль­цо без бортов и свободно снимается, а внутреннее кольцо с бортами со­ставляет комплект с сепаратором и роликами.

На один и тот же диаметр шейки вала предусматривается несколько серий подшипников, которые отличаются размерами колец и тел качения и соответственно величиной воспринимаемых нагрузок.

В пределах каждой серии подшипники равных типов взаимозаменяемы в мировом масштабе. В стандартах указываются: номер подшипника, размеры, вес, предельное число оборотов, статическая нагрузка и коэффициент работоспособности.

Первая и вторая цифры справа условно обозначают его номинальный внутренний диаметр d (диаметр вала). Для определения истинного размера d (в миллиметрах) необходимо указанные две цифры умножить на пять. Например, подшипник . 04 имеет внутренний диаметр 04 • 5 = 20 мм. Это правило распространяется на подшипники с цифрами . 04 и выше, до . 99, т. е. для J = 20h — 495 mm. Подшипники с цифрами. 00 имеют d- 10 мм; . 01 d = 12 мм; . 02 d = 15 мм; . 03 d = 17 мм.

Третья цифра справа обозначает серию подшипника, определяя его на­ружный диаметр: 1 — особо легкая, 2 — легкая; 3 — средняя, 4 — тяжелая; 5 — легкая широкая, 6 — средняя широкая.

Четвертая цифра справа обозначает тип подшипника. Если эта цифра 0, то это означает, что подшипник радиальный шариковый одно­рядный; шариковый однорядный (если левее 0 нет цифр, то 0 не указыва­ют); 1 — радиальный шариковый двухрядный сферический; 2 — радиаль­ный с короткими цилиндрическими роликами; 3 — радиальный роликовый двухрядный сферический; 4 — игольчатый или роликовый с длинными ци­линдрическими роликами; 5 — роликовый с витыми роликами; 6 — радиально-упорный шариковый; 7 — роликовый конический (радиально-упорный); 8 — упорный шариковый; 9 — упорный роликовый.

Так, например, подшипник 7208 является роликовым коническим.

Пятая и шестая цифры справа характеризуют конструктивные особен­ности подшипника (неразборный, с защитной шайбой, с закрепительной втулкой и т. п.).

Например:

— 50312 — радиальный однорядный шарикоподшипник средней серии со стопорной канавкой на наружном кольце;

— 150312 — тот же подшипник с защитной шайбой;

— 36312 — радиально-упорный шариковый однорядный подшипник сред­ней серии, неразборный.

Седьмая цифра справа характеризует серию подшипника по ширине.

ГОСТом установлены следующие классы точности подшипников каче­ния: 0 — нормальный класс (как правило, 0 в обозначении не указывают); 6 — повышенный; 5 — высокий, 4 — особо высокий, 2 — сверхвысокий. Цифру, обозначающую класс точности, ставят слева от условного обозна­чения подшипника и отделяют от него знаком тире; например, 206 означа­ет шариковый радиальный подшипник легкой серии с номинальным диа­метром 30 мм, класса точности 0.

Читать еще:  Насадки для полировки кузова автомобиля

Кроме цифр основного обозначения слева и справа от него могут дополнительные буквенные или цифровые знаки, характеризующие специальные условия изготовления данного подшипника.

Так, класс точности маркируют цифрой слева через тире от основного обозначения. В порядке повышения точности классы точности обозначают: 0, 6, 5, 4, 2. Класс точности, обозначаемой цифрой 0 и соответствующей нормальной точности, не проставляют. В общим машиностроение применяют подшипники классов 0 и 6. в изделиях высокой точности или работающей высокой частотой вращения (шпиндельные узлы скоростных станков, высокооборотный электродвигатели и др.) применяют подшипники класса 5 и 4. подшипники класса точности 2 используют в гироскопических приборах.

Так, например, подшипник 7208 — класса точности 0.

Помимо приведенных выше имеются и дополнительные (более высокие и более низкие) классы точности.

В зависимости от наличия дополнительных требований к уровню вибраций, отклонениям формы и расположения поверхностей качения, моменту трения и др. установлены три категории подшипников: А — повышенные регламентированные нормы; В — регламентированные нормы; С — без дополнительных требований.

Возможные знаки справа от основного обозначения: Е — сепаратор выполнен из пластических материалов; Р — детали подшипника из теп­лостойких сталей; С — подшипник закрытого типа при заполнении сма­зочным материалом и др.

Примеры обозначений подшипников:

— 311 — подшипник шариковый радиальный однорядный, средней серии диаметров 3, серии ширин 0, с внутренним диаметром d = 55 мм, основной конструкции (см. рис. 14.5, а), класса точности 0;

— 6-36209 — подшипник шариковый радиально-упорный однорядный, легкой серии диаметров 2, серии ширин 0, с внутренним диаметром d = 45 мм, с углом контакта а = 12°, класса точности 6;

— 4-12210 — подшипник роликовый радиальный с короткими цилиндрическими роликами, легкой серии диаметров 2, серии ширин 0, с внутренним диаметром d = 50 мм, с одним бортом на наружном кольце (см. рис. 14.9, б), класса точности 4;

— 4-3003124Р — подшипник роликовый радиальный сферический двухрядный особолегкой серии диаметров 1, серии ширин 3, с внутренним диаметром d = 120 мм, основной конструкции (см. рис. 14.8), класса точности 4, детали подшипника изготовлены из теплостойких сталей.

Характеристики подшипников качения.

Наибольшее распространение получили шариковые радиальные одноряд­ные подшипники (см. рис. 16, а). Эти подшипники допускают сравнительно большую угловую скорость, особенно с сепараторами из цветных металлов или из пластмасс, допускают небольшие перекосы вала (от 15′ до 30′) и могут воспринимать незначительные осевые нагрузки. Допустимая осевая нагрузка для радиальных несамоустанавливающихся подшипников не должна превы­шать 70% от неиспользованной радиальной грузоподъемности подшипника.

Роликовые радиальные подшипники с короткими роликами (см. рис. 16, в) по сравнению с аналогичными по габаритным размерам шари­коподшипниками обладают увеличенной грузоподъемностью, хорошо вы­держивают ударные нагрузки. Однако они совершенно не воспринимают осевых нагрузок и не допускают перекоса вала (ролики начинают работать кромками, и подшипники быстро выходят из строя).

Роликовые радиальные подшипники с витыми роликами (см. рис. 16, е) применяют при радиальных нагрузках ударного действия; удары смягчают­ся податливостью витых роликов. Эти подшипники менее требовательны к точности сборки и к защите от загрязнений, имеют незначительные ради­альные габаритные размеры.

Игольчатые подшипники (см. рис. 16, д) отличаются малыми радиаль­ными габаритными размерами, находят применение в тихоходных (до 5 м/с) и тяжелонагруженных узлах, так как выдерживают большие ради­альные нагрузки. В настоящее время их широко используют для замены подшипников скольжения. Эти подшипники воспринимают только радиальные нагрузки и не допускают перекоса валов. Для максимального уменьшения размеров применяют подшипники в виде комплекта игл, не­посредственно опирающихся на вал, с одним наружным кольцом.

Самоустанавливающиеся радиальные двухрядные сферические шариковые (рис. 16, б) и роликовые (см. рис. 16, г) подшипники применяют в тех слу­чаях, когда перекос колец подшипников может составлять до 2—3°. Эти под­шипники допускают незначительную осевую нагрузку (порядка 20% от не­использованной радиальной) и осевую фиксацию вала. Подшипники имеют высокие эксплуатационные показатели, но они дороже, чем однорядные.

Конические роликоподшипники (см. рис. 16, з) находят примене­ние в узлах, где действуют одновременно радиальные и односторонние осевые нагрузки. Эти подшипники могут воспринимать также и ударные нагрузки. Радиальная грузоподъемность их в среднем почти в 2 раза выше, чем у радиальных однорядных шарикоподшипников. Их рекомендуется ус­танавливать при средних и низких угловых скоростях вала (до 15 м/с).

Аналогичное использование имеют радиально-упорные шарикоподшипники (см. рис. 16, ж), применяемые при средних и высоких угловых скоростях. Радиальная грузоподъемность у этих подшипников на 30-40 % больше, чем у радиальных однорядных. Их выполняют разъемными со съемным на­ружным кольцом и неразъемными.

Шариковые и роликовые упорные подшипники (см. рис. 16, и. к) предназначены для восприятия односторонних осевых нагрузок. Применя­ются при сравнительно невысоких угловых скоростях, главным образом на вертикальных валах. Упорные подшипники радиальную нагрузку не вос­принимают. При необходимости установки упорных подшипников в узлах, где действуют не только осевые, но и радиальные нагрузки, следует допол­нительно устанавливать радиальные подшипники.

В некоторых конструкциях, где приходится бороться за уменьшение радиальных габаритов, применяются т.н. «бескольцевые» подшипники, когда тела качения установлены непосредственно между валом и корпусом. Однако нетрудно догадаться, что такие конструкции требуют сложной, индивидуальной, а, следовательно, и дорогой сборки-разборки.

Достоинства подшипников качения:

низкое трение, низкий нагрев;

— высокий уровень стандартизации;

— экономия дорогих антифрикционных материалов.

Недостатки подшипников качения:

высокие контактные напряжения, и поэтому ограниченный срок службы;

высокие габариты (особенно радиальные) и вес;

— высокие требования к оптимизации выбора типоразмера;

— большая чувствительность к ударным нагрузкам вследствие большой жесткости конструкции;

— слабая виброзащита, более того, подшипники сами являются генераторами вибрации за счёт даже очень малой неизбежной разноразмерности тел качения.

Детали машин

Подшипники качения

Общие сведения

Подшипники качения (рис. 1) представляют собой готовый узел, основными элементами которого являются тела качения – шарики 2 или ролики, установленные между кольцами 1 и 3 и удерживаемые на определенном расстоянии друг от друга сепаратором 4.

Сепаратор служит для направления и удержания тел качения в определенном положении (для обеспечения соосности колец) и для разделения тел качения от их взаимного контакта с целью уменьшения изнашивания и уменьшения потерь на трение.

Внешнее и внутреннее кольца подшипника (или, как их еще называют – обоймы) имеют на рабочей поверхности желобки – дорожки качения, по которым и перекатываются тела качения. Форма колец подшипников качения (наружных и внутренних) определяет угол контакта тел качения с дорожкой качения и, соответственно, влияет на величину осевой или радиальной грузоподъёмности подшипника.

Распределение радиальной нагрузки между телами качения, находящимися в нагруженной зоне (ограниченной дугой не более 180˚), неравномерно (рис. 2) вследствие контактных деформаций колец и различных тел качения. На размер зоны нагружения и неравномерность распределения нагрузки оказывают влияние величина радиального зазора в подшипнике и жесткость корпуса.

Читать еще:  Устройство напольных весов механических

В отдельных случаях для уменьшения радиальных размеров подшипник применяют без колец (рис. 3) и тела качения катятся по дорожкам качения, образованным непосредственно на цапфе и в корпусе (в блоке зубчатых колес). Твердость, точность и шероховатость поверхности дорожек качения в этом случае должны быть такими же, как у подшипниковых колец (обойм). Такие игольчатые подшипники могут применяться без сепаратора (а) или с сепаратором (б).

Подшипники качения стандартизированы и широко распространены во всех отраслях машиностроения. Их изготовляют в больших количествах на специализированных подшипниковых заводах, которые организованы во многих городах России и других стран.

Достоинства и недостатки подшипников качения

По сравнению с подшипниками скольжения подшипники качения обладают рядом положительных свойств и преимуществ:

  • Сравнительно малая стоимость благодаря возможности стандартизации и массового производства.
  • Небольшие потери на трение и незначительный нагрев при работе, при этом потери на трение в момент пуска и в рабочем режиме практически не отличаются.
  • Полная взаимозаменяемость, что облегчает монтаж и ремонт машин и механизмов.
  • Небольшой расход дефицитных цветных материалов по сравнению с подшипниками скольжения, в конструкции которых обычно применяются медесодержащие сплавы и цветные металлы.
  • Незначительный расход смазочного материала во время эксплуатации.
  • Малые осевые размеры, простота монтажа и эксплуатации.

Не лишены подшипники качения и недостатков:

  • Относительно большие радиальные размеры.
  • Высокая чувствительность к ударным и вибрационным нагрузкам.
  • Большое сопротивление вращению, шум и низкая долговечность при высоких частотах вращения.
  • Повышенный шум из-за циклического перекатывания тел вращения через нагруженную зону подшипника (рис. 2).
  • Более сложная конструкция по сравнению с подшипниками скольжения.

Область применения подшипников качения

Подшипники качения являются основным видом опор в машинах (автомобилях, сельскохозяйственной, дорожной и военной технике, самолетах, станках и т. п.). Так, в одном автомобиле может применяться более 120 типоразмеров подшипников качения, в самолете их количество может превышать 1000 шт. При этом надежность и долговечность подшипников во многом определяют ресурс машины или механизма.

Классификация подшипников качения

Подшипники качения классифицируют по следующим основным признакам:

По форме тел качения (рис. 4) – шариковые и роликовые, причем последние могут быть с цилиндрическими, коническими, бочкообразными, игольчатыми и витыми роликами. Применяют и тела качения сложной геометрической формы (рис. 4,а).

По направлению воспринимаемой нагрузки – радиальные, радиально-упорные, упорные и упорно-радиальные. Деление подшипников в зависимости от направления воспринимаемой нагрузки носит в ряде случаев условный характер. Например, широко распространенный шариковый радиальный однорядный подшипник успешно применяют для восприятия не только радиальной или комбинированной, но и чисто осевой нагрузки, а упорно-радиальные подшипники обычно используют только для восприятия осевых нагрузок.

По числу рядов тел качения – одно-, двух- и четырехрядные.

По основному конструктивному признаку – самоустанавливающиеся (например, сферические самоустанавливающиеся при угловом смещении осей вала и отверстия в корпусе) и несамоустанавливающиеся; с цилиндрическим или конусным отверстием внутреннего кольца (обоймы), сдвоенные и др.

Кроме основных подшипников каждого типа изготавливают их конструктивные разновидности (модификации).

Условные обозначения и маркировка подшипников качения

В нашей стране условные обозначения подшипников регламентируются российским стандартом ГОСТ 3189-89 «Подшипники шариковые и роликовые. Система условных обозначений». Импортные подшипники имеют отличающуюся от российской маркировку, подробное описание которой приведено на следующей странице.

Условное обозначение подшипника обычно наносится на торцевую поверхность внешнего или/и внутреннего кольца (см. рисунок).

Основное условное обозначение может быть составлено из семи цифр, условно обозначающих внутренний диаметр подшипника, размерную серию, тип, конструктивные особенности и др. Нули, стоящие левее последней значащей цифры, не проставляют. В этом случае число цифр в условном обозначении может быть меньше семи, например: 7206.

Две первые цифры справа обозначают диаметр d отверстия внутреннего кольца подшипника. Для подшипников с внутренним диаметром d = 20…495 мм размер внутреннего диаметра определяется умножением указанных двух цифр на 5. Так, подшипник 7206 имеет диаметр внутреннего кольца d = 30 мм (06×5).

Третья цифра справа обозначает серию диаметров и совместно с седьмой цифрой, обозначающей серию ширин, определяет размерную серию подшипника, т. е. условно характеризует его внешние габариты. В порядке увеличения наружного диаметра подшипника (при одном и том же внутреннем диаметре d) серии бывают: особо легкая – 1, легкая – 2, средняя – 3, тяжелая – 4 и др. Так, подшипник 7206 – легкой серии диаметров 2.

Четвертая цифра справа обозначает тип подшипника:

  • 0 — Шариковый радиальный
  • 1 – Шариковый радиальный сферический двухрядный
  • 2 – Роликовый радиальный с короткими цилиндрическими роликами
  • 3 – Роликовый радиальный сферический двухрядный
  • 4 – Роликовый радиальный игольчатый однорядный
  • 5 – Роликовый радиальный с витыми роликами
  • 6 – Шариковый радиально-упорный однорядный
  • 7 – Роликовый конический
  • 8 – Шариковый упорный, шариковый упорно-радиальный
  • 9 – Роликовый упорный, роликовый упорно-радиальный

Приведенный выше в качестве примера подшипник 7206 является роликовым коническим.

Пятая и шестая цифры справа обозначают отклонение конструкции подшипника от основного (базового) типа. Например, подшипник 7206 основной конструкции пятой цифры в обозначении не имеет, а аналогичный подшипник с упорным бортом на наружном кольце имеет обозначение 67206.

Седьмая цифра справа обозначает серию подшипника по ширине. В порядке увеличения ширины подшипника (при одних и тех же наружном и внутреннем диаметрах) серии по ширине бывают 0, 1, 2, 3 и др.

Кроме цифр основного обозначения справа и слева от него могут быть нанесены дополнительные буквенные или цифровые знаки, характеризующие специальные условия изготовления данного подшипника.

Так, класс точности подшипника маркируется цифрой слева от основного обозначения через тире (дефис). В порядке повышения классы точности обозначают: 0, 6, 5, 4, 2. Класс точности, обозначаемый цифрой и соответствующий нормальной точности, не проставляют.
В общем машиностроении применяют подшипники классов и 6. В изделиях высокой точности или работающих с высокой частотой вращения (высокооборотные электродвигатели, шпиндели скоростных станков и т. п.) применяют подшипники классов 5 и 4. Приведенный в нашем примере подшипник 7206 имеет класс точности .
Помимо приведенных выше имеются и дополнительные (более высокие и низкие) классы точности.

В зависимости от наличия дополнительных требований к уровню вибраций, отклонениям формы и расположения поверхностей качения, моменту трения и другим параметрам установлены три категории подшипников:
А – повышенные регламентированные нормы;
В – регламентированные нормы;
С – без дополнительных требований.
Знак категории указывают слева от обозначения класса точности.

Возможные знаки справа от основного обозначения:
Е – сепаратор выполнен из пластических материалов;
Р – детали подшипника из теплопроводных сталей;
С – подшипник закрытого типа, заполненный смазочным материалом и др.

Примеры обозначений подшипников:

311 – подшипник шариковый радиальный однорядный средней серии диаметров 3, серии по ширине , с внутренним диаметром 55 мм, основной конструкции класса точности .

6-36209 – подшипник шариковый радиально-упорный однорядный, легкой серии диаметров 2, серии по ширине , с внутренним диаметром 45 мм, с углом контакта α = 12˚, класса точности .

4-12210 – подшипник роликовый однорядный с короткими цилиндрическими роликами, легкой серии диаметров 2, серии по ширине , с внутренним диаметром 50 мм, с одним бортом на наружном кольце, класса точности 4.

4- 3003124Р – подшипник роликовый радиальный сферический двухрядный особо легкой серии диаметров 1, серии по ширине 3, с внутренним диаметром 120 мм, основной конструкции, класса точности 4, детали подшипника изготовлены из теплостойких сталей.

Читать еще:  Плуг для мотоблока чертежи с размерами

Подшипники. Область применения подшипников скольжения и качения. Конструкция и материалы, применяемые для изготовления.

Подшипники скольжения.

Чаще всего, подшипник скольжения состоит из корпуса с цилиндрическим отверстием, куда вставляется втулка из материала с антифрикционными свойствами. В такой конструкции обычно, предусмотрена также система смазки, которая обеспечивает поступление смазочного материала в зазор между валом и втулкой подшипника.

Рабочие зазоры в подшипниках, работающих со смазкой, рассчитываются на основе гидродинамической теории. При этом, находится минимальная толщина слоя смазки в микрометрах, температура и давление в этом слое, а также расход смазочного материала. Подшипники различной конструкции, с различными значениями скорости вращения цапфы и в разных условиях эксплуатации могут характеризоваться различными типами трения, которое может быть сухим, граничным, гидродинамическим или газодинамическим. Следует заметить, что даже подшипники с гидродинамическим трением при пуске механизма некоторое время работают в режиме граничного трения.

Смазка относится к числу основных факторов, определяющих надежность и срок службы подшипника. Функцией смазки является: обеспечение минимального трения между подвижными частями, отвод избыточного тепла, защита от неблагоприятных внешних факторов.

При этом, смазка может быть:

— жидкой (синтетические и минеральные масла или вода для подшипников из неметаллических материалов);

— пластичной (смазки с использованием литиевого мыла или сульфоната кальция);

— твердой (дисульфид молибдена, графит и пр.);

— газовой (азот или инертные газы).

Самыми высокими эксплуатационными параметрами обладают самосмазывающиеся пористые подшипники, которые изготовлены по технологии порошковой металлургии. Такой пористый подшипник, будучи пропитанным маслом, в процессе работы нагревается и смазка выдавливается из пор в рабочий зазор на трущиеся поверхности. В нерабочем состоянии такой подшипник остывает и смазка снова уходит в его поры.

В зависимости от допустимого направления рабочих нагрузок, подшипники разделяют на осевые (упорные) и радиальные.

Подшипники качения: радиальные, упорные и радиально-упорные с цилиндрическими, бочкообразными, коническими и игольчатыми роликами. Классы точности подшипников. Применение. Требования в отношении жесткости и точности. Сборка с предварительным натягом. Выбор радиального зазора. Последствия сборки подшипника подшипника с чрезмерным натягом и большим зазором.

В состав подшипника качения входят два кольца, комплект тел качения и сепаратор, предназначенный для удержания тел качения на фиксированных расстояниях друг от друга. Однако, иногда используют и подшипники без сепаратора. Внутренняя поверхность наружного кольца и наружная поверхность внутреннего кольца снабжаются желобами – дорожками качения, предназначенными для движения тел качения в процессе работы подшипника.

В некоторых машинах и механизмах для увеличения точности работы, жесткости конструкции и снижения ее габаритов используют подшипники совмещенного типа, в которых роль одного из колец подшипника выполняет непосредственно вал (дорожка качения выполняется на валу) или корпусная деталь. Находят применение и подшипники без сепараторов, в которых используется большое количество тел качения. Такие подшипники имеют повышенную грузоподъемность, однако, максимальные частоты их вращения заметно ниже, чем у обычных подшипников с сепараторами из-за повышенных потерь на трение.

В подшипниках качения главенствующую роль играет трение качения, т.к. трение скольжения между сепаратором и телами качения, как правило, невелико. Поэтому в подшипниках качения, по сравнению с подшипниками скольжения, наблюдаются значительно меньшие потери энергии, а также меньший механический износ.

Подшипники качения закрытого типа (с защитными крышками) почти не требуют какого-либо обслуживания, в то время, как открытые чувствительны к инородным телам, которые способны быстро разрушить подшипник.

Механические нагрузки, действующие на подшипник, принято разделять на радиальные, действующие перпендикулярно оси подшипника, и осевые, действующие вдоль оси подшипника.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Сфера и область применения подшипников. Где применяются подшипники.

Подшипники играют важную роль в современной механике. Примитивные аналоги этого механизма были известны ещё до нашей эры. Внешне такие механизмы смутно напоминали современные подшипники, но конструктивные сходства присутствовали. Об этом свидетельствуют находки с самых разных частей света. Современные подшипники активно применяются в различных сферах, существенно облегчая жизнь человека. Для чего нужны данные механизмы, и какие сферы и области применения подшипников Вы можете узнать в этой статье.

Типы и виды подшипников

Задача данного механизма – обеспечить равномерное движение вращательного характера, при этом снизить уровень трения между поверхностями. Существуют различные виды и типы подшипников. В зависимости от силы трения различают подшипники скольжения и качения. По названию, примерно можно понять, в чем их разница. Подшипники скольжения работают благодаря скользящим элементам, а качения – катящимся. Скользящими элементами в подшипниках могут выступать валы и планки, а катящимися элементами – цилиндры, ролики или различные шарики.

Каждый вид подшипника подразделяется на разные типы в зависимости от различных характеристик. Чтобы примерно иметь представление, о чем идет речь, приведем несколько примеров типов подшипников качения и скольжения. Подшипники качения подразделяются на роликовые и шариковые. Роликовые, в свою очередь, делятся на цилиндрические, игольчатые, конические и множество других. Подшипники скольжения можно поделить на радиальные, упорные и радиально – упорные.

Применение подшипников качения

Как уже было сказано, основными конструктивными элементами подшипников качения являются ролики и шарики. Конструкция таких подшипников позволяет поддерживать различные валы, оси механизмов и деталей, которые находится в движении.

Сферы и области применения подшипников чрезвычайно важны. Например, такие механизмы незаменимы в изготовлении различных транспортных средств и механизмов. Рассмотрим некоторые сферы и области применения подшипников качения.

  1. Производство оборудования. Подшипники качения применяют в оборудовании для разных видов промышленности, например, для пищевой промышленности. Такие механизмы позволяют повысить производительность и более рационально распределить ресурсы.
  2. Сталелитейная промышленность и цветная металлургия. Подшипники используют на различных этапах производства. Они имеют высокую механическую стойкость и поэтому не бояться ударных нагрузок.
  3. Автомобилестроение, авиация. Например, шариковые подшипники отлично себя проявили в случаях, когда нагрузки имеют постоянный характер и средние нагрузки. Роликовые подшипники применяются, если нагрузки значительно выше.
  4. Производство бытовой техники. Часто используют игольчатые подшипники, так как онихороши в использовании с объектами небольших размеров.

Применение подшипников скольжения

Подшипники скольжения различаются от подшипников качения, но сферы их применения схожи. Такие подшипники активно применяются для изготовления различного оборудования, железнодорожной техники, в автомобилестроении, авиационной промышленности. Особенно популярны радиальные подшипники скольжения.

К сферам и областям применения подшипников скольжения также можно отнести технику для сельского хозяйства и строительную технику. Такие подшипники активно применяют в случаях, где существует вероятность высоких ударных нагрузок и неблагоприятных природных условий.

Безусловно, на современном этапе развития любой промышленности невозможно обойтись без применения подшипников. Эта сфера активно развивается во многих странах мира, в том числе и в Украине.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector