10 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Определение механических свойств металлов и сплавов

Механические свойства металлов и способы их определения

Методы определения механических свойств металлов разделяют на:
– статические, когда нагрузка растет медленно и плавно (испытания на растяжение, сжатие, изгиб, кручение, твердость);
– динамические, когда нагрузка растет с большой скоростью (испытания на ударный изгиб);
– циклические, когда нагрузка многократно изменяется по величине и направлению (испытания на усталость).

Испытание на растяжение

При испытании на растяжение определяют предел прочности ( σ в), предел текучести ( σ т), относительное удлинение ( δ ) и относительное сужение ( ψ ). Испытания проводят на разрывных машинах c использованием стандартных образцов с площадью поперечного сечения Fo и рабочей (расчетной) длиной lo. В результате проведения испытаний получают диаграмму растяжения (рис. 1). На оси абсцисс указывается значение деформации, на оси ординат – значение нагрузки, которая прилагается к образцу.
Предел прочности ( σ в) – это максимальная нагрузка, которую выдерживает материал без разрушения, отнесенная к начальной площади поперечного сечения образца (Pmax/Fo).

Рис. 1. Диаграмма растяжения

Необходимо отметить, что при растяжении образец удлиняется, а его поперечное сечение непрерывно уменьшается. Истинное напряжение определяется делением действующей в определенный момент нагрузки на площадь, которую образец имеет в этот момент. Истинные напряжения в повседневной практике не определяют, а пользуются условными напряжениями, считая, что поперечное сечение Fо образца остается неизменным.

Предел текучести ( σ т) – это нагрузка, при которой происходит пластическая деформация, отнесенная к начальной площади поперечного сечения образца (Рт / Fo). Однако при испытаниях на растяжение у большинства сплавов площадки текучести на диаграммах нет. Поэтому определяется условный предел текучести ( σ 0.2) – напряжение, которому соответствует пластическая деформация 0,2%. Выбранное значение 0,2% достаточно точно характеризует переход от упругих деформаций к пластическим.

К характеристикам материала относят также предел упругости ( σ пр), под которым подразумевают напряжение, при котором пластическая деформация достигает заданного значения. Обычно используют значения остаточной деформации 0,005; 0,02; 0,05%. Таким образом, σ 0,05 = Рпр / Fo (Рпр – нагрузка, при которой остаточное удлинение составляет 0,05%).

Предел пропорциональности σ пц = Рпц / Fo (Рпц – максимальная нагрузка, при действии которой еще выполняется закон Гука).

Пластичность характеризуется относительным удлинением ( δ ) и относительным сужением ( ψ ):

δ = [(lk – lo)/lo]∙100% ψ = [(Fo – Fk)/Fo]∙100%,

где lk – конечная длина образца; lo и Fo – начальные длина и площадь поперечного сечения образца; Fk – площадь поперечного сечения в месте разрыва.

Для малопластичных материалов испытания на растяжение вызывают затруднения, поскольку незначительные перекосы при установке образца вносят существенную погрешность в определение разрушающей нагрузки. Такие материалы, как правило, подвергают испытанию на изгиб.

Испытание на твердость

Нормативные документы:

  • ГОСТ 8.062—85 «Государственная система обеспечения единства измерений. Государственный специальный эталон и государственная поверочная схема для средств измерений твердости по шкалам Бринелля»
  • ГЭТ 33—85 «Государственный специальный эталон единиц твердости по шкалам Бринелля»

    Твердость – способность материала оказывать сопротивление проникновению в него другого, более твердого тела – индентора. Твердость материала определяют методами Бринелля, Роквелла, Виккерса, Шора (рис.2).

    Рис. 2. Схемы определения твердости по Бринеллю(а), Роквеллу(б) и Виккерсу(в)

    Твердость металла по Бринеллю указывается буквами НВ и числом. Для перевода числа твердости в систему СИ пользуются коэффициентом К = 9,8 • 106, на который умножают значение твердости по Бринеллю: НВ = НВ • К, Па.

    Метод определения твердости по Бринеллю не рекомендуется применять для сталей с твердостью свыше НВ 450 и цветных металлов с твердостью более 200 НВ.

    Для различных материалов установлена корреляционная связь между пределом прочности (в МПа) и числом твердости НВ: σв ≈ 3,4 НВ – для горячекатаных углеродистых сталей; σв ≈ 4,5 НВ – для медных сплавов, σв ≈ 3,5НВ – для алюминиевых сплавов.

    Определение твердости методом Роквелла осуществляют путем вдавливания в металл алмазного конуса или стального шарика. Прибор Роквелла имеет три шкалы – А,В,С. Алмазный конус применяют для испытания твердых материалов (шкалы А и С), а шарик – для испытания мягких материалов (шкала В). В зависимости от шкалы твердость обозначается буквами HRB, HRC, HRA и выражается в специальных единицах.

    При измерении твердости по методу Виккерса производят вдавливание в поверхность металла (шлифуемую или полируемую) четырехгранной алмазной пирамиды. Этот метод применяют для определения твердости деталей малой толщины и тонких поверхностных слоев, которые имеют высокую твердость (например, после азотирования). Твердость по Виккерсу обозначают HV. Перевод числа твердости HV в систему СИ производится аналогично переводу числа твердости НВ.

    При измерении твердости по методу Шора шарик с индентором падает на образец, перпендикулярно его поверхности, а твердость определяется по высоте отскока шарика и обозначается HS.

    Метод Кузнецова — Герберта — Ребиндера — твёрдость определяется временем затухания колебаний маятника, опорой которого является исследуемый металл.

    Испытание на ударную вязкость

    Ударная вязкость характеризует способность материала оказывать сопротивление динамическим нагрузкам и проявляющейся при этом склонности к хрупкому разрушению. Для испытания на удар изготовляют специальные образцы с надрезом, которые потом разрушают на маятниковом копре (рис.3). По шкале маятникового копра определяют работу К, затраченную на разрушение, и рассчитывают основную характеристику, получаемую в результате этих испытаний – ударную вязкость. Она определяется отношением работы разрушения образца к площади его поперечного сечения и измеряется в МДж/м 2 .

    Для обозначения ударной вязкости применяют буквы КС и добавляют третью, которая указывает на вид надреза на образце: U, V, T. Запись KCU означает ударную вязкость образца с U-подобным надрезом, KCV – с V-подобным надрезом, а KCT – с трещиной, созданной в основании надреза. Работа разрушения образца при проведении ударных испытаний содержит две составляющие: работу зарождения трещины (Аз) и работу распространения трещины (Ар).

    Определение ударной вязкости особенно важно для металлов, которые работают при низких температурах и выявляют склонность к хладноломкости, то есть к снижению ударной вязкости при понижении температуры эксплуатации.

    Читать еще:  Можно ли в выходной день сверлить перфоратором

    Рис. 3. Схема маятникового копра и ударного образца

    При проведении ударных испытаний образцов с надрезом при низких температурах определяют порог хладноломкости, который характеризует влияние снижения температуры на склонность материала к хрупкому разрушению. При переходе от вязкого к хрупкому разрушению наблюдается резкое снижение ударной вязкости в интервале температур, который имеет название температурный порог хладноломкости. При этом изменяется строение излома от волокнистого матового (вязкое разрушение) к кристаллическому блестящему (хрупкое разрушение). Порог хладноломкости обозначают интервалом температур (tв.– tхр.) или одной температурой t50, при которой в изломе образца наблюдается 50% волокнистой составляющей или же величина ударной вязкости снижается в два раза.

    О пригодности материала к работе при заданной температуре судят по температурному запасу вязкости, который определяется по разнице между температурой эксплуатации и переходной температурой хладноломкости, и чем он больше, тем надежнее материал.

    Испытание на усталость

    Усталость – процесс постепенного накопления повреждений материала под действием повторно-переменных напряжений, которые приводят к образованию трещин и разрушений. Усталость металла вызывается концентрацией напряжений в отдельных его объемах (в местах скопления неметаллических и газовых включений, структурных дефектов). Свойство металла сопротивляться усталости называется выносливостью.

    Испытания на усталость проводят на машинах для повторно-переменного изгибания вращающегося образца, закрепленного одним или обоими концами, или на машинах для испытаний на растяжение-сжатие, или на повторно-переменное скручивание. В результате испытаний определяют предел выносливости, который характеризует сопротивление материала усталости.

    Предел выносливости – максимальное напряжение, при действии которого не происходит усталостного разрушения после базового количества циклов нагружения.

    Предел выносливости обозначается σR, где R – коэффициент асимметрии цикла.

    Для определения предела выносливости проводят испытания не менее десяти образцов. Каждый образец испытывают только при одном напряжении до разрушения или при базовом числе циклов. Базовое число циклов должно быть не ниже 107 нагружений (для стали) и 108 (для цветных металлов).

    Важной характеристикой конструкционной прочности является живучесть при циклическом нагружении, под которой понимают продолжительность эксплуатации детали от момента зарождения первой макроскопической усталостной трещины размером 0,5…1 мм до окончательного разрушения. Живучесть имеет особое значение для надежности эксплуатации изделий, безаварийная работа которых поддерживается путем раннего обнаружения и предотвращения дальнейшего развития усталостных трещин.

    Механические свойства металлов и сплавов

    Область применения металлов определяется их основными механическими свойствами. Выделяют много параметров, которые могут использоваться для определения качества стали. Механические свойства металлов и сплавов могут существенно отличаться, что связано с химическим составом, особенностями структуры и тем, была ли проведена термическая обработка. Рассмотрим все особенности механических свойств металлов подробнее.

    Основные механические показатели

    Металлы получили широкое применение благодаря тому, что могут обладать различными эксплуатационными характеристиками. Наибольшее распространение получили следующие:

    1. Твердость определяется несколькими методами при использовании соответствующей оснастки.
    2. Предел прочности учитывается при производстве различных деталей, которые на момент эксплуатации подвержены воздействию различных нагрузок.
    3. Упругость — способность металла или сплава возвращать свою форму после того, как на поверхность перестает воздействовать нагрузка. Металлы обладают относительно невысоким показателем упругости.
    4. Под ударной вязкостью понимают сопротивление материала воздействию ударных нагрузок. Учитывается при производстве деталей, на которые в дальнейшем будет оказываться переменная нагрузка.
    5. Ползучестью называют свойство металла или сплава к медленной пластичной деформации при воздействии нагрузок. Как правило, параметр проявляется при воздействии высокой температуры, когда начинает перестраиваться кристаллическая решетка.
    6. Выделяют и усталость металла. Эта характеристика указывает на то, как материал будет разрушаться при воздействии большого числа повторно-переменных нагрузок. Кроме этого, выделяют выносливость — способность материала выдерживать подобные нагрузки.
    7. Точка плавления. Металлы и сплавы могут переходить из твердого состояния в жидкое при воздействии высокой температуры. Плавка может проходить при различных показателях температуры, которые и называют точной плавления.

    Рассмотрим некоторые наиболее важные механические показатели, которые указываются в технической литературе.

    Твердость материала

    Твердость — характеристика, которая определяет способность одного металла сопротивляться проникновению в него другого твердого тела. Этот показатель один из основных, учитывается при производстве различных деталей, инструментов и изделий.

    Выделяют несколько методов определения этого показателя:

    1. По Бринеллю проводится определение твердости поверхности путем плавного увеличения оказываемой нагрузки. Для этого используется стальной шарик, который вдавливается под воздействием определенного давления. После проведения испытания проверяется диаметр отпечатка и высчитывается то, какая твердость у тестируемой поверхности. Измеряется твердость в HB .
    2. По Роквуллу тестирование проводится при использовании алмазного конуса стандартного типа. Кроме этого, подходит и шарик диаметром 1,588 мм из закаленной стали. По данному методу показатель твердости получается в определенных единицах измерения.
    3. По Виккурсу определяют твердость поверхности также при использовании специального алмазного наконечника. Выполнен он в виде пирамиды с четырьмя гранями. Как и при измерении по Бринеллю, на наконечник оказывается давление, после чего измеряется отпечаток и проводятся вычисления показателя твердости.

    Высокая твердость часто определяет хрупкость структуры. Существует много различных методов повышения твердости поверхности, большая часть предусматривает выполнение термической и химической обработки.

    Предел прочности

    Под пределом прочности понимают величину, которая численно равна наибольшей нагрузке, приложенной к образу при растяжении, разделенной на площадь поперечного сечения. Указывается в кг/мм 2 .

    К особенностям определения этого показателя можно отнести нижеприведенные моменты:

    1. Для проведения теста используется специальная разрывная машина.
    2. На момент прикладывания нагрузки может наблюдаться удлинение образца.
    3. В некоторый момент происходит скачок показателя на растяжение.

    После достижения определенного показателя образец начинает удлиняться с большей скоростью. Для более точного определения предела прочности проводится создание графика, на котором и отмечается точка скачка скорости растяжения.

    Предел текучести

    Практически все металлы и сплавы могут находиться в двух основных агрегатных состояниях: жидком и твердом. Предел текучести — показатель, определяющий напряжение, при котором на момент деформации образца указатель нагрузки на применяемой разрывной машине остается неизменным. Этот показатель учитывается при изготовлении различных заготовок, которые в дальнейшем будут использоваться под нагрузкой.

    Механические свойства металлов и сплавов

    К механическим свойствам металлов и сплавов относят прочность, упругость, пластичность, твердость, вязкость, выносливость (усталость). Зная механические свойства, можно правильно и обоснованно выбирать соответствующий материал, обеспечивающий надежность и долговечность конструкции при ее минимальной массе.

    Читать еще:  Отрезные диски по металлу рейтинг

    Механические свойства характеризуют поведение материала под действием приложенных механических сил (нагрузок). Механические свойства определяются при механических испытаниях по специально разработанным методам.

    Статические испытания — на растяжение, сжатие, изгиб, твердость, кручение при статическом нагружении. Статические нагрузки прикладываются постоянно или плавно возрастают. Основные статические испытания — на растяжение (ГОСТ 1497—84) на разрывных машинах с построением диаграммы (кривой) растяжения. Эти испытания определяют свойства прочности (ав, ад) и пластичности (5, ц/) материала.

    Динамические испытания — на ударный изгиб при динамическом нагружении. Динамическая нагрузка — ударная, возрастает резко с большой скоростью. Динамические нагрузки чаще всего являются причиной хрупкого разрушения материала. Испытания проводят на приборе — маятниковом копре (ГОСТ 9454—78) на специальных образцах с надрезом. Надрез является концентратором напряжений. При этом определяется ударная вязкость КС.

    Усталостные испытания при знакопеременном (циклическом) нагружении. Знакопеременные нагрузки — многократные прикладываемые, изменяющиеся по величине и направлению. При этом развивается явление, которое носит название усталости металла — постепенное накопление повреждений (трещин), приводящих к разрушению. Испытания проводят методом изгиба при вращении (ГОСТ 25.502—79).

    Другие виды испытаний:

    • • испытания на жаропрочность;
    • • технологические испытания на изгиб, осадку, перегиб, выдавливание (для определения способности металла к пластическому деформированию).

    Прочность — способность металла сопротивляться деформациям и разрушению под воздействием внешних сил.

    Предел прочности (временное сопротивление разрыву, ав) — напряжение, соответствующее максимальной нагрузке, которую выдерживает образец металла до разрушения. Предел прочности характеризует прочность как сопротивление значительной равномерной пластичной деформации (рис. 1.1).

    Предел прочности рассчитывается по формуле

    где Pq — величина нагрузки, при которой на образце начинает образовываться шейка при его растяжении; Fq — площадь поперечного сечения образца до испытаний.

    Рис. 1.1. Диаграмма деформирования материала при его нагружении

    Предел упругости — характеризует сопротивление металла малой пластической деформации. Так как практически невозможно установить точку перехода металла в неупругое состояние, то устанавливают условный предел упругости — максимальное напряжение, до которого образец получает только упругую деформацию. Принято считать напряжение, при котором остаточная деформация очень мала (0,005. 0,05 %). В обозначении указывается значение остаточной деформации, например ао;о5-

    Условный предел текучести (а 2) характеризует сопротивление малым пластическим деформациям. Условный предел текучести рассчитывают по формуле

    Предел пропорциональностиПц) — максимальные напряжения, при которых выполняется закон Гука.

    Разрушение наступит в точке С (рис. 1.1) при резком уменьшении поперечного сечения образца. Истинное сопротивление разрыву Sk (напряжения при разрушении образца) определяется по формуле

    где Рк величина нагрузки, при которой образец разрушается; Fk площадь поперечного сечения образца после испытаний.

    Пластичность — способность материала к пластической деформации, т. е. его способность, не разрушаясь, изменять форму под нагрузкой и сохранять ее после прекращения действия нагрузки. Это свойство используют при обработке металлов давлением. Пластичные материалы более надежны в работе, так как для них меньше вероятность опасного хрупкого разрушения. При испытании на растяжение пластичность характеризуется относительным удлинением 5, которое соответствует отношению приращения длины образца после разрыва к его первоначальной длине в процентах.

    Твердость — характеризует способность металла оказывать сопротивление проникновению в него другого, более твердого стандартного тела (индентора), не получающего остаточных деформаций, при местном контактном воздействии в поверхностном слое.

    О твердости судят либо по глубине проникновения индентора (метод Роквелла), либо по величине отпечатка от вдавливания (методы Бринелля и Виккерса) под воздействием заданной силы Р. На рис. 1.2 приведены схемы определения твердости по Виккерсу, Бринеллю (ГОСТ 9012—59) и Роквеллу (ГОСТ 9013—59).

    Определение твердости по методу Бринелля применяется для сырых или слабо закаленных металлов, так как при больших нагрузках шарик деформируется и показания искажаются. Твердость по Бринеллю обозначается как НВ, например НВ 250.

    Между твердостью по Бринеллю и пределом прочности пластичных материалов существует следующая зависимость:

    Рис. 1.2. Схемы определения твердости: а — по Бринеллю; б — по Роквеллу; в — по Виккерсу где к — коэффициент пропорциональности; для стали с твердостью до НВ 175 А: = 0,34; для стали с твердостью выше НВ 175 к = 0,35; для отожженной меди, бронзы и латуни к = 0,55; для алюминиевых сплавов к = 0,36. 0,38.

    Твердость по методу Виккерса рассчитывается как отношение приложенной нагрузки к площади поверхности отпечатка и обозначают как HV150. Преимущество метода Виккерса в том, что им можно измерять твердость любых материалов, в том числе тонких изделий и поверхностных слоев. Метод имеет высокую чувствительность и точность.

    Вязкость — способность материала поглощать механическую энергию внешних сил за счет пластической деформации. Вязкость является энергетической характеристикой материала и выражается в единицах работы. Вязкость металлов и сплавов зависит от их химического состава, термической обработки и других внутренних факторов. Кроме этого, вязкость зависит и от условий, в которых работает металл (температуры, скорости нагружения, наличия концентраторов напряжения).

    Характеристикой вязкости является ударная вязкостьн) — удельная работа разрушения. Испытание металла на ударную вязкость проводят на образцах с надрезами определенной формы и размеров. По ГОСТ 9454—78 ударную вязкость обозначают как KCV, KCU и КСТ, где КС — символ ударной вязкости, третий символ показывает вид надреза: острый (V), с радиусом закругления (U), трещина (Т). Ударная вязкость характеризует надежность материала, его способность сопротивляться хрупкому разрушению.

    Хладноломкость — склонность металла к переходу в хрупкое состояние с понижением температуры. С повышением температуры вязкость металла увеличивается (рис. 1.3). При изменении температуры предел текучести сто 2 также существенно изменяется, а сопротивление отрыву ctqt не зависит от температуры. При температуре выше Гв предел текучести меньше сопротивления отрыву. При увеличении нагрузки сначала происходит пластическое деформирование, а затем разрушение. Металл при этом находится в вязком состоянии.

    Читать еще:  Температура портативной газовой горелки

    В технике за порог хладноломкости принимают температуру, при которой в изломе 50 % вязкой составляющей. Причем эта температура должна быть ниже температуры эксплуатации изделий не менее чем на 40 °С.

    Рис. 1.3. Влияние температуры на пластичное и хрупкое состояние

    Испытания на выносливость (ГОСТ 25.502—79) дают характеристики усталостной прочности.

    Усталость разрушение материала при повторных знакопеременных напряжениях, величина которых не превышает предела текучести.

    Усталостная прочность способность материала сопротивляться усталости. Характеристики усталостной прочности определяются при циклических испытаниях «изгиб при вращении». Основные характеристики усталостной прочности:

    • предел выносливости максимальное напряжение, выдерживаемое металлом за произвольно большое число циклов нагружения;
    • ограниченный предел выносливости максимальное напряжение, выдерживаемое металлом за определенное число циклов нагружения или время;
    • живучесть разность между числом циклов до полного разрушения и числом циклов до появления усталостной трещины.

    Характеристики основных механических свойств металлов и сплавов и способы их определения

    Любое вещество, будь то газ, жидкость или твердое тело, обладает рядом специфических, только ему присущих свойств. Однако эти свойства позволяют не только индивидуализировать элементы, но и объединять их в группы по принципу схожести.

    Посмотрите на металлы: с обывательской точки зрения это блестящие элементы, с высокой электро- и теплопроводностью, не восприимчивые к внешним физическим воздействиям, ковкие и легко свариваемые при высоких температурах. Достаточен ли этот перечень. чтобы объединить металлы в одну группу? Конечно же нет, металлы и их производные (сплавы) гораздо сложнее и обладают целым набором химических, физических, механических и технологических свойств. Сегодня мы поговорим лишь об одной группе: механических свойствах металлов.

    Основные механические свойства металлов

    Что это за свойства? Под механическими понимают такие свойства субстанции, которые отражают ее умение противостоять действиям извне. Известно девять основных механических свойств металлов:

    – Прочность – означает, что приложение статической, динамической или знакопеременной нагрузки не приводит к нарушению внешней и внутренней целостности материала, изменению его строения, формы и размеров.

    – Твердость (часто путают с прочностью) – характеризует возможность одного материала противостоять прониканию другого, более твердого предмета.

    – Упругость – означает способность к деформированию без нарушения целостности под действием определенных сил и возвращению первоначальной формы после освобождения от нагрузки.

    – Пластичность (часто путают с упругостью и наоборот) – также способность к деформации без нарушения целостности, однако в отличие от упругости, пластичность означает, что объект способен сохранить полученную форму.

    – Стойкость к трещинам – под воздействием внешних сил (ударов, натяжений и пр.) материал не образует трещин и сохраняет наружную целостность.

    – Вязкость или ударная вязкость – антоним ломкости, то есть возможность сохранять целостность материала при возрастающих физических воздействиях.

    – Износостойкость – способность к сохранению внутренней и внешней целостности при длительном трении.

    – Жаростойкость – длительная возможность противостоять изменению формы, размера и разрушению при воздействии больших температур.

    – Усталость – время и количество циклических воздействий, которые материал может выдержать без нарушения целостности.

    Часто, говоряо тех или иных свойствах, мы путаем их названия: технологические свойства относим к физическим, физические к механическим и наоборот. И это неудивительно, ведь несмотря на глубинные отличия, лежащие в основе той или иной группы свойств, механические свойства не только крайне тесно связаны с другими характеристиками металлов, но и напрямую зависят от них.

    Физические свойства металлов

    Наиболее взаимозависимы между собой механические и химические свойства металлов, ведь именно химический состав металла или сплава, его внутреннее строение (особенности кристаллической решетки) диктуют все остальные его параметры. Если говорить о механических и физических свойствах металлов, то их чаще других путают между собой, что обусловлено близостью данных определений.

    Физические свойства часто неотделимы от механических. К примеру, тугоплавкие металлы еще и самые прочные. Главное же отличие лежит в природе свойств. Физические свойства – те что проявляется в покое, механические – только под воздействием извне. Не хуже других связаны механические и технологические свойства металлов. Например, механическое свойство металла “прочность” может быть результатом его грамотной технологической обработки (с этой целью нередко используют “закалку” и “старение”). Обратная взаимосвязь не менее важна, к примеру, ковкость проявление хорошей ударной вязкости.

    Делая вывод, можно сказать, что зная некоторые химические, физические или технологические свойства можно предугадать, как будет вести себя металл под воздействием нагрузки (т.е. механически), и наоборот.

    В чем отличия механических свойств металлов и сплавов?

    Различаются ли механические свойства металлов и сплавов? Безусловно. Ведь любой металлический сплав изначально создается с целью получения каких-либо конкретных свойств. Некоторые сочетания легирующих элементов и основного металла в сплаве способны мгновенно преобразить легируемый элемент. Так алюминий ( не самый прочный и твердый металл в мире) в сочетании с цинком и магнием образует сплав по прочности сравнимый со сталью. Все это дает практически неограниченные возможности в получении веществ наиболее близких к требуемым.

    Отдельное внимание следует уделить механическим свойствам наплавленных металлов. Наплавленным считается металл, с помощью которого производилась сварка двух или более частей какого-то металлического элемента или конструкции. Этот металл словно нитки соединяет разорванные части. От того, как будет вести себя “шов” под нагрузкой, будет зависеть безопасность и надежность всей конструкции. Исходя из этого, крайне важно, чтобы свойства наплавленного металла были не хуже, чем у главного металла.

    Как определить механические свойства?

    Экспериментальным путем. Среди основных методов определения механических свойств металлов можно выделить:

    – испытания на растяжение;

    – метод вдавливания по Бринеллю;

    – определение твердости металла по Роквеллу;

    – оценка твердости по Виккерсу;

    – определение вязкости с помощью маятникового копра;

    Механические свойства имеют весьма серьезное значение. Их знание позволяет использовать металлы и их сплавы с наибольшей эффективностью и отдачей.

    голоса
    Рейтинг статьи
  • Ссылка на основную публикацию
    Статьи c упоминанием слов: