29 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Металл с низкой теплопроводностью

Теплопроводность металлов и сплавов

Металлы обладают большим количеством характеристик, которые определяют их эксплуатационные качества и возможность применения при изготовлении определенных изделий. Важной характеристикой всех материалов можно назвать теплопроводность. Этот показатель определяет способность материального тела к переносу тепловой энергии. Таблица теплопроводности металлов встречается в различных справочниках, может зависеть от различных их особенностей. Примером можно назвать то, что механизм переноса тепловой энергии во многом зависит от агрегатного состояния вещества.

От чего зависит показатель теплопроводности

Рассматривая теплопроводность металлов и сплавов (таблица создана не только для металлов, но и других материалов), следует учитывать, что наиболее важным показателем является коэффициент теплопроводности. Он зависит от нижеприведенных моментов:

  1. Типа материала и его химического состава. Теплопроводность железа будет существенно отличаться от соответствующего показателя алюминия, что связано с особенностями кристаллической решетки материалов и их другими свойствами.
  2. Коэффициент может изменяться при нагреве или охлаждения металла. При этом изменения могут быть существенными, так как у каждого материала есть своя точка плавления, когда молекулы начинают перестраиваться.

В таблицах для некоторых металлов и сплавов коэффициент теплопроводности указывается уже в жидкой фазе.

Сегодня на практике практически не проводят измерение рассматриваемого показателя. Это связано с тем, что коэффициент теплопроводности при несущественном изменении химического состава остается практически неизменным. Табличные данные применяются при проектировании и выполнении других расчетов.

Понятие коэффициента теплопроводности

Для обозначения рассматриваемого значения применяется символ λ – количество тепла, которое передается в единицу времени через единицу поверхности на момент повышения температуры. Это значение применяется при проведении различных расчетов.

Описание свойства теплопроводности многих металлов проводится по формуле k = 2,5·10−8σT. В этой формуле учитывается:

  1. Температура, измеряемая в Кельвинах.
  2. Показатель электропроводности.

Это соотношение больше всего подходит для определения свойств проводников на момент эксплуатации при нагреве, но в последнее время применяется и для измерения степени проводимости тепловой энергии.

Полупроводники и изоляторы обладают более низкими показателями проводимости тепла, что связано с особенностями строения их кристаллической решетки.

Когда учитывается

При рассмотрении различных свойств материалов часто уделяется внимание и теплопроводности. Этот показатель важен в нижеприведенных случаях:

  1. Когда нужно отвести тепло от объекта. Тепловая энергия может возникать из-за трения. При этом нагрев становится причиной изменения основных свойств металлов и сплавов: прочности и твердости поверхности. Примером назовем конструкцию двигателя внутреннего сгорания. В процессе хода поршня в блоке цилиндров происходит нагрев основных элементов конструкции. Из-за слишком высокого нагрева даже металлы, устойчивые к воздействию высокой температуры, начинают терять прочность и становятся более пластичными. В результате происходит изменение геометрических размеров важных элементов конструкции, и она выходит из строя. Учитывается теплопроводность и при создании режущего инструмента, обшивки самолетов или высокоскоростных поездов.
  2. Когда нужно передать тепловую энергию. Центральная система отопления основана на нагреве рабочей среды, которая после подводится к потребителю и происходит передача энергии окружающей среде. Для того чтобы повысить эффективность создаваемой системы трубы, и отопительные радиаторы изготавливаются из металлов, которые способны быстро передавать тепло.
  3. Когда нужно изолировать поверхность. Встречается ситуация, когда нужно снизить вероятность нагрева поверхности. Для этого применяются специальные материалы, которые обладают высокими изоляционными качествами. Некоторые металлы и сплавы также обладают отражающими свойствами и не нагреваются, а также не передают тепло. Примером назовем фольгу, которая часто применяется в качестве отражающего экрана. Она также изготавливается из тонкого слоя металла, обладающего низким коэффициентом проводимости.

В заключение отметим, что до развития молекулярно-кинетической теории было принято считать передачу тепловой энергии признаком перетекания гипотетического теплорода. Появление современного оборудования позволило изучить строение материалов и изучить поведение частиц при воздействии высокой температуры. Передача энергии происходит за счет быстрого движения молекул, которые начинают сталкиваться, и приводит в движение другие молекулы, находящиеся в спокойном состоянии.

Редактировать статью Что такое теплопроводность и теплопередача. Теплопроводность металлов и других материалов.

Тепло – это одна из форм энергии, которая заключена в движении атомов в веществе. Энергию этого движения мы и измеряем термометром, хоть и не напрямую.
Как и все другие виды энергии, теплота может передаваться от тела к телу. Происходит это всегда, когда есть тела разной температуры. При этом им необязательно даже находиться в соприкосновении, так существует несколько способов передачи тепла. А именно:

Читать еще:  Заготовки для токарных работ по металлу

Теплопроводность. Это передача тепла при непосредственном контакте двух тел. (Тело может быть и одно, если его части разной температуры.) При этом чем больше разность температур тел и чем больше площадь их контакта – тем больше тепла передаётся каждую секунду. Помимо этого, количество передаваемого тепла зависит от материала – например, большинство металлов хорошо проводят тепло, а дерево и пластик – гораздо хуже. Величину, характеризующую эту способность передавать тепло, тоже называют теплопроводностью (более корректно – коэффициент теплопроводности), что может приводить к некоторой путанице.

Если необходимо измерить теплопроводность какого-либо материала, то обычно это проводят в следующем эксперименте: изготовляется стержень из интересующего материала и один его конец поддерживается при одной температуре, а другой – при отличной, например более низкой, температуре. Пусть, например, холодный конец будет помещён в воду со льдом – таким образом будет поддерживаться постоянная температура, а измеряя скорость таяния льда можно судить о количестве полученного тепла. Деля количество тепла (а вернее – мощность) на разность температур и поперечное сечение стержня и умножая на его длину, получаем коэффициент теплопроводности, измеряющийся, как следует из вышенаписанного, в Дж*м/К*м 2 *с, то есть в Вт/К*м. Ниже вы видите таблицу теплопроводности некоторых материалов.

Как видно, теплопроводность различается на много порядков. Удивительно хорошо проводят тепло алмаз и оксиды некоторых металлов (по сравнению с другими диэлектриками), плохо проводят тепло воздух, снег и термопаста КПТ-8.

Но мы привыкли считать, что воздух хорошо проводит тепло, а вата – нет, хотя она может на 99% состоять из воздуха. Дело в конвекции. Горячий воздух легче холодного, и “всплывает” наверх, порождая постоянную циркуляцию воздуха вокруг нагретого или сильно охлаждённого тела. Конвекция на порядок улучшает теплопередачу: при её отсутствии было бы очень затруднительно вскипятить кастрюлю воды, не перемешивая её постоянно. А в диапазоне от 0°С до 4°С вода при нагревании сжимается, что приводит к конвекции в противоположном от привычного направлении. Это приводит к тому, что независимо от температуры воздуха, на дне глубоких озёр температура всегда устанавливается равной 4°C

Для уменьшения теплоотдачи из пространства между стенками термосов откачивают воздух. Но надо отметить, что теплопроводность воздуха мало зависит от давления вплоть до 0,01мм рт.ст, то есть границы глубокого вакуума. Этот феномен объясняется теорией газов.

Ещё один способ теплопередачи – это излучение. Все тела излучают энергию в виде электромагнитных волн, но только достаточно сильно нагретые (

600°С) излучают в видимом нами диапазоне. Мощность излучения даже при комнатной температуре достаточно большая – порядка 40мВт с 1см 2 . В пересчёте на площадь поверхности человеческого тела (

1м 2 ) это составит 400Вт. Спасает лишь то, что в привычном нам окружении все тела вокруг также излучают с примерно той же мощностью. Мощность излучения, кстати, сильно зависит от температуры (как T 4 ) , согласно закону Стефана-Больцмана. Расчёты показывают, что, например, при 0°С мощность теплового излучения примерно в полтора раза слабее, чем при 27°С.

В отличие от теплопроводности, излучение может распространяться в полном вакууме – именно благодаря нему живые организмы на Земле получают энергию Солнца. Если теплопередача излучением нежелательна, то её минимизируют, ставя непрозрачные перегородки между холодным и горячим объектами, либо уменьшают поглощение излучения (и испускание, кстати, в ровно той же степени), покрывая поверхность тонким зеркальным слоем металла, например, серебра.

  • Данные по теплопроводности взяты из Wikipedia, а туда они попали из справочников, таких, как:
  • «Физические величины» под ред. И. С. Григорьева
  • CRC Handbook of Chemistry and Physics
  • Более строгое описание теплопроводности можно найти в учебнике по физике, например в «Общей физике» Д.В.Сивухина (Том 2). В 4 томе есть глава, посвящённая тепловому излучению (в т.ч. закону Стефана-Больцмана)
Читать еще:  Технологическая карта сварки металлоконструкций пример

Теплопроводность чистых металлов

Теплопроводность металлов в зависимости от температуры

В таблице представлена теплопроводность металлов в зависимости от температуры при отрицательных и положительных температурах (в интервале от -200 до 2400°C).

Таблица теплопроводности металлов содержит значения теплопроводности следующих чистых металлов: алюминий Al, кадмий Cd, натрий Na, серебро Ag, калий K, никель Ni, свинец Pb, кобальт Co, бериллий Be, литий Li, сурьма Sb, висмут Bi, магний Mg, цинк Zn, вольфрам W, олово Sn, уран U, железо Fe, палладий Pd, цирконий Zr, марганец Mn, платина Pt, золото Au, медь Cu, родий Rh, таллий Tl, молибден Mo, тантал Ta, иридий Ir.

Следует отметить, что теплопроводность металлов изменяется в широких пределах и может отличаться в десятки раз в одних и тех же условиях. Например, из приведенных в таблице металлов, наибольшей теплопроводностью обладает такой металл, как серебро Ag — его коэффициент теплопроводности равен 392 Вт/(м·град) при 100°С и это самый теплопроводный металл. Наименьшее значение теплопроводности при этой же температуре соответствует металлу висмут Bi с теплопроводностью всего 7,7 Вт/(м·град).

Теплопроводность большинства металлов при нагревании снижается. Их максимальная теплопроводность достигается при низких отрицательных температурах. Например, при температуре минус 100°С серебро имеет теплопроводность 419,8, а висмут — 11,9 Вт/(м·град).

Примечание: В таблице также даны значения теплопроводности металлов сверх-высокой чистоты (до 99,999%). Значение коэффициента теплопроводности в таблице указано в размерности Вт/(м·град).

  • Теплофизические свойства и температура замерзания водных растворов NaCl и CaCl2
  • Теплофизические свойства, состав и теплопроводность алюминиевых сплавов

Читайте также

Добавить комментарий Отменить ответ

Теплопроводность строительных материалов, их плотность и теплоемкость

Плотность, теплопроводность и удельная теплоемкость строительных и других популярных материалов. Более 400 материалов в таблице!

Плотность воды, теплопроводность и физические свойства H2O

Подробные таблицы значений плотности воды, ее теплопроводности и других теплофизических свойств в зависимости от температуры…

Физические свойства воздуха: плотность, вязкость, удельная теплоемкость

Таблицы физических свойств воздуха: плотность воздуха, его удельная теплоемкость и вязкость в зависимости от температуры…

Теплопроводность стали и чугуна. Теплофизические свойства стали

Теплопроводность стали и чугуна, физические свойства стали в таблицах при различной температуре…

Оргстекло: тепловые и механические характеристики

Рассмотрены тепловые, механические, оптические и электрические характеристики органического стекла…

Физические свойства технической соли

Насыпная плотность, удельная теплоемкость, коэффициент теплопроводности и другие физические свойства технической соли…

Характеристики теплоизоляционных плит Изорок (Isoroc)

Плотность, коэффициент теплопроводности и другие важнейшие характеристики теплоизоляционных плит Изорок различных модификаций…

Удельное электрическое сопротивление стали при различных температурах

Представлены таблицы значений удельного электрического сопротивления сталей различных типов и марок при температурах от 0 до 1350°С…

Теплопроводность, плотность углекислого газа, свойства CO2

Плотность и другие свойства углекислого газа CO2 в зависимости от температуры и давления В таблице…

Свойства и плотность азотной кислоты HNO3

В таблице представлены свойства безводной (концентрированной) азотной кислоты HNO3 в зависимости от температуры при отрицательной…

Температура плавления керамики

Температура плавления керамики распространенных типов В таблице представлены значения температуры плавления керамики различного состава. Температура…

Теплопроводность цветных металлов, теплоемкость и плотность сплавов

Коэффициенты теплопроводности, теплоемкость и плотность распространенных металлов и сплавов в зависимости от температуры…

Теплопроводность сплавов меди. Температура плавления латуни и бронзы

Теплопроводность латуни и бронзы В таблице приведены значения теплопроводности латуни, бронзы, а также медно-никелевых сплавов…

Плотность, теплопроводность, теплоемкость кислорода O2

Плотность, теплоемкость, свойства кислорода O2 В таблице представлены теплофизические свойства кислорода такие, как плотность, энтальпия, энтропия,…

Теплопроводность, теплоемкость, свойства фреона-113 (R113, CCl2FCClF2)

В таблице представлены теплофизические свойства жидкого фреона-113 на линии насыщения в зависимости от температуры, в…

Температуропроводность металлов

В таблице представлены значения коэффициента температуропроводности чистых металлов в зависимости от температуры. Температуропроводность металлов указана…

Свойства маргарина

Свойства маргарина распространенных сортов Плотность, теплоемкость, теплопроводность и температуропроводность представлены для животного, безмолочного и сливочного…

Какие показатели теплопроводности металла считаются нормой?

У каждого металла есть ряд параметров, характеризующие его как материал. Их нужно учитывать при изготовления различных предметов, заготовок, повышения эксплуатационных характеристик. Один из главных параметров — теплопроводность металлов. Этот показатель учитывают производители при изготовлении термодатчиков, радиаторов, холодильных установок.

Читать еще:  Поделки из металлолома своими руками фото

Металлообрабатывающий завод

Определение и значение

Теплопроводность — способность материалов переносить энергию тепла от разогретых поверхностей к холодным участкам. Теплопроводящими могут быть жидкости, газы, твердые вещества. Это способность тела проводить тепловую энергию через себя, передавать ее другим предметам.

Коэффициент теплопроводности — величина, равняющаяся количеству теплоты, которая переносится через определенную площадь поверхности за 1 секунду.

Впервые этот параметр был установлен в 1863 году. Ученые доказали, что передача теплоты осуществляется за счет движения свободных электронов. В металлических заготовках их больше, чем в предметах из другим материалов.

Какие факторы влияют на показатель?

Чтобы понять, как повысить или понизить показатель разных видов металла, нужно знать какие факторы влияют на этот параметр:

  • размеры изделия, площадь поверхности;
  • форму заготовки;
  • химический состав;
  • пористость материала;
  • вид материала;
  • изменение температуры воздействия.

Также внимание нужно уделить строению кристаллической решетки.

Металлические листы (Фото: Instagram / metall61_armatura_dostavka)

Какие показатели считаются нормой?

Коэффициент учитывается в различных сферах производства. Этот параметр нужно учитывать при изготовлении:

  • утюгов;
  • нагревательных приборов;
  • холодильных камер;
  • подшипников скольжения;
  • оборудования для нагревания воды;
  • отопительных приборов.

Изучая свойства различных материалов, специалисты составили таблицы с показателями теплопроводности для каждого из них. Их можно найти в специализированных справочниках.

Для стали

Справочники объединяют в себе расчетные данные для разных материалов:

  • стали, которая используется при изготовлении режущего инструмента;
  • сплавов для производства пружин;
  • стали, насыщенной легирующими добавками;
  • сплавов, стойких в образованию ржавчины;
  • материалов, устойчивых к высокой температуре.

Данные в таблицы собирались для стали, которая подвергалась термической обработке при температуре от -263°C до +1200°C.

Термообработка (Фото: Instagram / energomashvologda)

Для меди, никеля, алюминия и их сплавов

Показатель для металлов и сплавов будет отличаться для цветных и черных металлов. У железа и цветных металлов разная структура, температура плавления, строение кристаллической решетки.

В таблицах можно найти информацию о химическом составе меди, никеля, алюминия. Особенности:

  • самая высокая теплопроводность у никеля, магния, меди и сплавов на их основе.
  • самая низкая теплопроводность у инвара, нихрома, алюминия, олова.

Можно ли повысить показатель?

Ученые провели эксперимент по увеличение параметра с использованием графена. Они наносили слой графена на медные поверхности. Для этого применялась технология осаждения графеновых частиц из газа.

Показатель теплопроводности медной заготовки увеличился, поскольку зерна в структуре стали больше. Благодаря этому повысилась проходимость свободных электронов. При нагревании меди без графенового напыления размер зерен не был увеличен.

Также внимание нужно уделить влиянию концентрации углерода на показатель. У стали с высоким содержанием углерода он выше. Благодаря этому из высокоуглеродистой стали изготавливаются трубы, запорная арматура.

Графен (Фото: Instagram / kalabs_lab)

Методы изучения и измерения

Прежде чем начинать изучение и измерение показателя теплопроводности нужно выбрать материал, узнать технологию его какой технологии получения. Например, металлические заготовки одинакового размера, формы, изготовленные литьем или порошковой металлургии будут отличаться основными параметрами. То же самое касается сырых металлов в сравнении с тем, которые прошли термическую обработку.

Чтобы получить точные данные, нужно выбирать заготовки прошедшие одинаковые этапы обработки. Они должны быть одного размера, формы, похожи по химическому составу.

Специалисты выделяют ряд актуальных методик измерения коэффициента теплопроводности, применяемыми предприятиями:

  1. TCT (Методика разогретой проволоки).
  2. HFM (Методика теплового потока).
  3. GHP (Технология раскаленной охранной зоны).
  4. Релакционно-динамический способ. С его помощью проводятся массовые измерения технических характеристик. При измерении нужно выбирать заготовки с одинаковой отражающей способностью поверхностей.

При изготовлении различных предметов, деталей, оборудования из металла, специалисты учитывают отдельные технические характеристики. Например, при производстве теплообменников, радиаторов, систем охлаждения, нагрева воды, главный параметр — коэффициент теплопроводности. На него влияет химическое строение материала, кристаллическая решетка, пористость, форма, размеры заготовки.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: