0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Металл который плавится при комнатной температуре

Содержание

Температура кипения и плавления металлов. Температура плавления стали

Температура кипения и плавления металлов

В таблице представлена температура плавления металлов tпл, их температура кипения tк при атмосферном давлении, плотность металлов ρ при 25°С и теплопроводность λ при 27°С.

Температура плавления металлов, а также их плотность и теплопроводность приведены в таблице для следующих металлов: актиний Ac, серебро Ag, алюминий Al, золото Au, барий Ba, берилий Be, висмут Bi, кальций Ca, кадмий Cd, кобальт Co, хром Cr, цезий Cs, медь Cu, железо Fe, галлий Ga, гафний Hf, ртуть Hg, индий In, иридий Ir, калий K, литий Li, магний Mg, марганец Mn, молибден Mo, натрий Na, ниобий Nb, никель Ni, нептуний Np, осмий Os, протактиний Pa, свинец Pb, палладий Pd, полоний Po, платина Pt, плутоний Pu, радий Ra, рубидий Pb, рений Re, родий Rh, рутений Ru, сурьма Sb, олово Sn, стронций Sr, тантал Ta, технеций Tc, торий Th, титан Ti, таллий Tl, уран U, ванадий V, вольфрам W, цинк Zn, цирконий Zr.

По данным таблицы видно, что температура плавления металлов изменяется в широком диапазоне (от -38,83°С у ртути до 3422°С у вольфрама). Низкой положительной температурой плавления обладают такие металлы, как литий (18,05°С), цезий (28,44°С), рубидий (39,3°С) и другие щелочные металлы.

Наиболее тугоплавкими являются следующие металлы: гафний, иридий, молибден, ниобий, осмий, рений, рутений, тантал, технеций, вольфрам. Температура плавления этих металлов выше 2000°С.

Приведем примеры температуры плавления металлов, широко применяемых в промышленности и в быту:

  • температура плавления алюминия 660,32 °С;
  • температура плавления меди 1084,62 °С;
  • температура плавления свинца 327,46 °С;
  • температура плавления золота 1064,18 °С;
  • температура плавления олова 231,93 °С;
  • температура плавления серебра 961,78 °С;
  • температура плавления ртути -38,83°С.

Максимальной температурой кипения из металлов, представленных в таблице, обладает рений Re — она составляет 5596°С. Также высокими температурами кипения обладают металлы, относящиеся к группе с высокой температурой плавления.

Плотность металлов в таблице находится в диапазоне от 0,534 до 22,59 г/см 3 , то есть самым легким металлом является литий, а самым тяжелым металлом осмий. Следует отметить, что осмий имеет плотность большую, чем плотность урана и даже плутония при комнатной температуре.

Теплопроводность металлов в таблице изменяется от 6,3 до 427 Вт/(м·град), таким образом хуже всего проводит тепло такой металл, как нептуний, а лучшим теплопроводящим металлом является серебро.

Температура плавления стали

Представлена таблица значений температуры плавления стали распространенных марок. Рассмотрены стали для отливок, конструкционные, жаропрочные, углеродистые и другие классы сталей.

Температура плавления стали находится в диапазоне от 1350 до 1535°С. Стали в таблице расположены в порядке возрастания их температуры плавления.

МЕТАЛЛ, КОТОРЫЙ ТАЕТ В РУКАХ

Он хрупкий, как стекло, плавится при комнатной температуре и не любит другие металлы. Знакомьтесь: галлий.

В 1869 году его существование предсказал Дмитрий Менделеев. Основываясь на открытом периодическом законе, он оставил места в третьей группе для неизвестных элементов. (Таблица, как принято считать, приснилась великому химику, а о других «вещих» снах читайте в нашем обзоре ). Ориентируясь по «соседям», Менделеев достаточно точно описал их химические и физические свойства. А в 1875 году французский химик Поль Эмиль Лекок де Буабодран выступил на заседании Парижской академии наук, сообщив, что открыл новый элемент. Как раз так, как и предсказал Менделеев, — с помощью спектроскопии. Свою «находку» он предложил назвать галлием от слова «Галлия» (римское название исторической части Европы, включающей в том числе и Францию. — Прим. ред.). Хотя некоторые поговаривали, что за основу химик взял свою фамилию Лекок, созвучную французскому le coq («петух»). А по-латински «петух» — gallus, откуда недалеко и до галлия (gallium). В любом случае галлий занял третью группу четвертого периода системы химических элементов Менделеева под атомным номером 31.

Читать еще:  Декор из металла своими руками

Металл достаточно редкий. Собственные минералы галлия в природе обнаружены лишь в Намибии и Заире. В качестве примеси он входит в состав многих минералов, но его количество там крайне мало. И даже из бокситов, а именно на них приходится 90% мирового выпуска галлия, извлекается до 20%. Так что производство является сложным и дорогостоящим процессом. Основные страны, где им занимаются, — Китай, Германия, Япония.

Галлий обладает весьма интересными свойствами. Во-первых, тепла человеческого тела вполне достаточно, чтобы превратить этот серебристый металл в жидкость. Температура его плавления — всего 29,8 °С. Для сравнения: у свинца — 327 °С, у золота — 1063 °С, а у вольфрама — 3420 °С. Именно благодаря низкой температуре плавления галлий является основным компонентом многих легкоплавких сплавов, которые широко используют в технике. Удобно, к примеру, применять его в устройствах пожарной сигнализации. Стоит воздуху в помещении слегка нагреться, как столбик галлиевого сплава, вмонтированный в реле, начинает таять. В результате замыкаются электрические контакты и звуковой или световой сигнал извещает об опасности. Надежнее любого вахтера!

Во-вторых, галлий может длительное время не затвердевать в переохлажденном состоянии. Можно положить его вечером в морозильник и утром найти в таком же расплавленном виде. И даже если вылить каплю на лед, она еще долго не затвердеет. Зато, когда это произойдет, объем металла значительно увеличится. Это свойство проявляют немногие простые вещества и соединения, такие как, например, вода. Поэтому галлий обычно хранят в небольших желатиновых капсулах или резиновых баллонах.

Наконец, третье его достоинство в том, что он остается жидким в огромном интервале температур (от 29,8 до 2230 °С). А так как кипеть начинает лишь при 2230 °С, его используют при изготовлении высокотемпературных термометров и манометров. Сравните: температура кипения ртути — 356,7 °С.

Казалось бы, легкоплавкость в сочетании с возможностью долгое время оставаться жидким должны делать его прекрасным теплоносителем. Но не тут-то было! По отношению к другим металлам жидкий галлий недружелюбен: при повышенных температурах большинство из них он растворяет, то есть разрушает.

Зато способность хорошо отражать световые лучи позволяет широко использовать галлий при производстве зеркал. Причем они не тускнеют даже при повышенных температурах! Включают галлий и в состав медицинских препаратов, так как было установлено, что его ионы способны заменять ионы железа. Галлий является мощным антибактериальным средством, способен затормозить потерю костной массы у онкологических больных, быстро остановить кровотечение и ускорить заживление ран. Однако основной сферой применения его уникальных способностей остается микроэлектроника.

Пройдите также наш занимательный тест на знание таблицы Менделеева . Химиком для этого быть не обязательно!

4 невероятных химических субстанции, открытые людьми

Ученые открывают и создают новые материалы постоянно. Но иногда обнаруживаются такие вещи, что челюсть с грохотом падает на пол. Их нужно знать в лицо. От неописуемо легких твердых веществ, используемых NASA, до металлов, которые плавятся в руке, мы нашли для вас несколько невероятных химических веществ, известных и не очень. Быстренько по ним пробежимся.

Аэрогель: самое легкое твердое вещество

Этот удивительный гель представляет собой самое легкое в мире твердое вещество. С момента его изобретения в 1931 году американским ученым Самюэлем Кистлером, он использовался в космических миссиях для сбора пыли из хвоста кометы, госагентствами для разработки изолированных палаток и даже для изготовления одежды, которая защищает человека от экстремального тепла.

NASA назвало его «синим дымом», поскольку выглядит он как голограмма.

Крутым это вещество делают его парадоксальные свойства. Этот жесткий гель состоит по большей части из воздуха, поэтому весит мало, напоминая губку. При этом он отлично отталкивает тепло. Как видно на снимке ниже, он защищает цветок от сильного пламени.

Отдельные молекулы, которые составляют аэрогель, действуют подобно миниатюрным бейсбольным перчаткам — они улавливают быстро движущиеся частицы, не повреждая их. Это свойство оказалось крайне полезным во время миссии NASA Stardust.

Ученые наполнили силикатным аэрогелем массивный коллектор в форме ракетки, который находился снаружи на корабле Stardust. Его цель была в захвате хрупких частиц, остающихся после кометы Уайльд-2, не повреждая их. Поскольку аэрогель прочный и относительно прозрачный, ученые с легкостью обнаружили и извлекли частицы позже для анализа.

Читать еще:  Расход газа и кислорода при резке металла

Предшественник аэрогеля структурно напоминает желе. Желатиновый порошок в желе образует гибкий, жидкий раствор при смешивании с теплой водой, после чего охлаждается до жесткой запутанной сети, которая химически напоминает непослушный мяч в упряжке, принимая установленную форму. Если вы нагреете желе, оно высохнет и вы снова получите порошок.

Аэрогель, с другой стороны, состоит не из желатина. Чаще всего его делают из кремния, самого распространенного минерала в земной коре Земли. Влажный аэрогель проходит через цикл охлаждения и нагревания под давлением, что позволяет ему сохранять свою форму даже после высыхания. Получившийся аэрогель практически воздушный, твердый и очень легкий. На ощупь он как пенополистирол. Аэрогель можно сделать даже самостоятельно, если знать как.

Галлий: металл, который плавится при комнатной температуре

Этот мягкий, блестящий и одновременно твердый металл довольно необычный. При низких температурах он принимает твердую форму. Но при нагреве до комнатной температуры он плавится в блестящую лужу.

До сих пор его основное применение было в сфере производства смартфонов, аэрокосмической области и в сфере связи. И хотя этот химический элемент присутствует в периодической таблице, в природе он не встречается. Его следы можно найти в цинковой руде и бокситах, из которых делают алюминий. Еще он имеется на Amazon, где его можно купить всего за 10 баксов.

И если вам удастся его раздобыть, держите его подальше от техники — он плохо влияет на другие металлы. Особенно это будет заметно, если алюминий на спинке вашего телефона поцарапан, что позволит галлию проникнуть глубже в металлическую решетку. Смотрите, что будет, если облить галлием поцарапанную крышку iPhone.

Через несколько часов она полностью разложится.

Алмазные нанонити: возможная основа для космического лифта?

Это относительно новое рукотворное волокно из атомов углерода, выстроенных в зигзагообразную структуру, похожу на алмазную, может быть самым прочным и жестким наноматериалом из всех, что мы когда-либо делали.

Открытое в 2014 году, это волокно выявило силу, которая превосходит углеродные нанотрубки, еще один сверхпрочный и легковесный материал. При всем этом оно чрезвычайно тонкое. Всего три атома в поперечнике, гораздо тоньше человеческого волоса. Поскольку эта структура была открыта совсем недавно, ее состав еще должны подтвердить снимки высокого разрешения.

Свойства и поведение тоже нуждаются в более глубоком понимании, прежде чем ее можно будет производить в коммерческих масштабах. Но если все получится, эти алмазные нановолокна могут в теории стать достаточно прочными, чтобы лечь в основу кабеля для космического лифта. Другие кандидаты, например сталь, ломаются под собственным весом.

Ферромагнитная жидкость

Эта похожая на дикобраза кучка сверхтонких магнитных частиц — железа, как правило — это жидкость, которая начинает танцевать и выстраивать невероятные структуры при воздействии магнитного поля.

Каждая отдельная крошечная частица в феррофлюиде (ferrofluid) покрыта поверхностно-активным веществом, которое препятствует слипанию частиц вместе, и суспендирована в жидкости — воде, например. Эти частицы не похожи на магниты на вашем холодильнике. Это «парамагнитные» частицы, то есть становятся крошечными магнитами в присутствии магнитного поля, которые движутся и слипаются с другими крошечными магнитами в поле.

Ферромагнитная жидкость была создана в 1963 году ученым NASA Стивом Паппелом как прототип для ракетного топлива, которое должно было двигать космический аппарат после применения магнитного поля на нее. Самое странное в ферромагнитных жидкостях то, что они ведут себя одновременно как жидкости и как твердые материалы.

4 невероятных химических субстанции, открытые людьми

Ученые открывают и создают новые материалы постоянно. Но иногда обнаруживаются такие вещи, что челюсть с грохотом падает на пол. Их нужно знать в лицо. От неописуемо легких твердых веществ, используемых NASA, до металлов, которые плавятся в руке, мы нашли для вас несколько невероятных химических веществ, известных и не очень. Быстренько по ним пробежимся.

Аэрогель: самое легкое твердое вещество

Этот удивительный гель представляет собой самое легкое в мире твердое вещество. С момента его изобретения в 1931 году американским ученым Самюэлем Кистлером, он использовался в космических миссиях для сбора пыли из хвоста кометы, госагентствами для разработки изолированных палаток и даже для изготовления одежды, которая защищает человека от экстремального тепла.

Читать еще:  Учебные токарные станки по металлу

NASA назвало его «синим дымом», поскольку выглядит он как голограмма.

Крутым это вещество делают его парадоксальные свойства. Этот жесткий гель состоит по большей части из воздуха, поэтому весит мало, напоминая губку. При этом он отлично отталкивает тепло. Как видно на снимке ниже, он защищает цветок от сильного пламени.

Отдельные молекулы, которые составляют аэрогель, действуют подобно миниатюрным бейсбольным перчаткам — они улавливают быстро движущиеся частицы, не повреждая их. Это свойство оказалось крайне полезным во время миссии NASA Stardust.

Ученые наполнили силикатным аэрогелем массивный коллектор в форме ракетки, который находился снаружи на корабле Stardust. Его цель была в захвате хрупких частиц, остающихся после кометы Уайльд-2, не повреждая их. Поскольку аэрогель прочный и относительно прозрачный, ученые с легкостью обнаружили и извлекли частицы позже для анализа.

Предшественник аэрогеля структурно напоминает желе. Желатиновый порошок в желе образует гибкий, жидкий раствор при смешивании с теплой водой, после чего охлаждается до жесткой запутанной сети, которая химически напоминает непослушный мяч в упряжке, принимая установленную форму. Если вы нагреете желе, оно высохнет и вы снова получите порошок.

Аэрогель, с другой стороны, состоит не из желатина. Чаще всего его делают из кремния, самого распространенного минерала в земной коре Земли. Влажный аэрогель проходит через цикл охлаждения и нагревания под давлением, что позволяет ему сохранять свою форму даже после высыхания. Получившийся аэрогель практически воздушный, твердый и очень легкий. На ощупь он как пенополистирол. Аэрогель можно сделать даже самостоятельно, если знать как.

Галлий: металл, который плавится при комнатной температуре

Этот мягкий, блестящий и одновременно твердый металл довольно необычный. При низких температурах он принимает твердую форму. Но при нагреве до комнатной температуры он плавится в блестящую лужу.

До сих пор его основное применение было в сфере производства смартфонов, аэрокосмической области и в сфере связи. И хотя этот химический элемент присутствует в периодической таблице, в природе он не встречается. Его следы можно найти в цинковой руде и бокситах, из которых делают алюминий. Еще он имеется на Amazon, где его можно купить всего за 10 баксов.

И если вам удастся его раздобыть, держите его подальше от техники — он плохо влияет на другие металлы. Особенно это будет заметно, если алюминий на спинке вашего телефона поцарапан, что позволит галлию проникнуть глубже в металлическую решетку. Смотрите, что будет, если облить галлием поцарапанную крышку iPhone.

Через несколько часов она полностью разложится.

Алмазные нанонити: возможная основа для космического лифта?

Это относительно новое рукотворное волокно из атомов углерода, выстроенных в зигзагообразную структуру, похожу на алмазную, может быть самым прочным и жестким наноматериалом из всех, что мы когда-либо делали.

Открытое в 2014 году, это волокно выявило силу, которая превосходит углеродные нанотрубки, еще один сверхпрочный и легковесный материал. При всем этом оно чрезвычайно тонкое. Всего три атома в поперечнике, гораздо тоньше человеческого волоса. Поскольку эта структура была открыта совсем недавно, ее состав еще должны подтвердить снимки высокого разрешения.

Свойства и поведение тоже нуждаются в более глубоком понимании, прежде чем ее можно будет производить в коммерческих масштабах. Но если все получится, эти алмазные нановолокна могут в теории стать достаточно прочными, чтобы лечь в основу кабеля для космического лифта. Другие кандидаты, например сталь, ломаются под собственным весом.

Ферромагнитная жидкость

Эта похожая на дикобраза кучка сверхтонких магнитных частиц — железа, как правило — это жидкость, которая начинает танцевать и выстраивать невероятные структуры при воздействии магнитного поля.

Каждая отдельная крошечная частица в феррофлюиде (ferrofluid) покрыта поверхностно-активным веществом, которое препятствует слипанию частиц вместе, и суспендирована в жидкости — воде, например. Эти частицы не похожи на магниты на вашем холодильнике. Это «парамагнитные» частицы, то есть становятся крошечными магнитами в присутствии магнитного поля, которые движутся и слипаются с другими крошечными магнитами в поле.

Ферромагнитная жидкость была создана в 1963 году ученым NASA Стивом Паппелом как прототип для ракетного топлива, которое должно было двигать космический аппарат после применения магнитного поля на нее. Самое странное в ферромагнитных жидкостях то, что они ведут себя одновременно как жидкости и как твердые материалы.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector