3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как обозначается микрофарад на конденсаторе

Содержание

Как расшифровать маркировку конденсатора и узнать его ёмкость?

Основные сведения о характеристиках конденсаторов, являющихся составными частями практически всех электронных схем, принято размещать на их корпусах. В зависимости от типоразмера элемента, производителя, времени производства данные, наносимые на электронный прибор, постоянно изменяются не только по составу, но и по внешнему виду.

С уменьшением размера корпуса состав буквенно-цифровых обозначений изменялся, кодировался, заменялся цветовой маркировкой. Разнообразие внутренних стандартов, используемых производителями радиоэлектронных элементов, требует определенных знаний для правильного интерпретирования информации нанесенной на электронный прибор.

Зачем нужна маркировка?

Цель маркировки электронных компонентов – возможность их точной идентификации. Маркировка конденсаторов включает в себя:

  • данные о ёмкости конденсатора – главной характеристике элемента;
  • сведения о номинальном напряжении, при котором прибор сохраняет свою работоспособность;
  • данные о температурном коэффициенте емкости, характеризующем процесс изменения емкости конденсатора в зависимости от изменения температуры окружающей среды;
  • процент допустимого отклонения емкости от номинального значения, указанного на корпусе прибора;
  • дату выпуска.

Для конденсаторов, при подключении которых требуется соблюдать полярность, в обязательном порядке указывается информация, позволяющая правильно ориентировать элемент в электронной схеме.

Система маркировки конденсаторов, выпускавшихся на предприятиях, входивших в состав СССР, имела принципиальные отличия от системы маркировки, применяемой на тот момент иностранными компаниями.

Маркировка отечественных конденсаторов

Для всех постсоветских предприятий характерна достаточно полная маркировка радиоэлементов, допускающая незначительные отличия в обозначениях.

Ёмкость

Первым и самым важным параметром конденсатора является емкость. В связи с этим значение данной характеристики располагается на первом месте и кодируется буквенно-цифровым обозначением. Так как единицей измерения емкости является фарада, то в буквенном обозначении присутствует либо символ кириллического алфавита «Ф», либо символ латинского алфавита «F».

Так как фарад – большая величина, а используемые в промышленности элементы имеют намного меньшие номиналы, то и единицы измерения имеют разнообразные уменьшительные префиксы (мили-, микро-, нано- и пико). Для их обозначения используют также буквы греческого алфавита.

  • 1 миллифарад равен 10 -3 фарад и обозначается 1мФ или 1mF.
  • 1 микрофарад равен 10 -6 фарад и обозначается 1мкФ или 1F.
  • 1 нанофарад равен 10 -9 фарад и обозначается 1нФ или 1nF.
  • 1 пикофарад равен 10 -12 фарад и обозначается 1пФ или 1pF.

Если значение емкости выражено дробным числом, то буква, обозначающая размерность единиц измерения, ставится на месте запятой. Так, обозначение 4n7 следует читать как 4,7 нанофарад или 4700 пикофарад, а надпись вида n47 соответствует емкости в 0,47 нанофарад или же 470 пикофарад.

В случае, когда на конденсаторе не обозначен номинал, то целое значение говорит о том, что емкость указана в пикофарадах, например, 1000, а значение, выраженное десятичной дробью, указывает на номинал в микрофарадах, например 0,01.

Ёмкость конденсатора, указанная на корпусе, редко соответствует фактическому параметру и отклоняется от номинального значения в пределах некоторого диапазона. Точное значение емкости, к которой стремятся при изготовлении конденсаторов, зависит от материалов, используемых для их производства. Разброс параметров может лежать в пределах от тысячных долей до десятков процентов.

Величина допустимого отклонения ёмкости указывается на корпусе конденсатора после номинального значения путем проставления буквы латинского или русского алфавита. К примеру, латинская буква J (русская буква И в старом обозначении) обозначает диапазон отклонения 5% в ту или иную стороны, а буква М (русская В) – 20%.

Такой параметр, как температурный коэффициент емкости, входит в состав маркировки достаточно редко и наносится в основном на малогабаритные элементы, применяемые в электрических схемах времязадающих цепей. Для идентификации используется либо буквенно-цифровая, либо цветовая система обозначений.

Встречается и комбинированная буквенно-цветовая маркировка. Варианты её настолько разнообразны, что для безошибочного определения значения данного параметра для каждого конкретного типа конденсатора требуется обращение к ГОСТам или справочникам по соответствующим радиокомпонентам.

Номинальное напряжение

Напряжение, при котором конденсатор будет работать в течение установленного срока службы с сохранением своих характеристик, называется номинальным напряжением. Для конденсаторов, имеющих достаточные размеры, данный параметр наносится непосредственно на корпус элемента, где цифры указывают на номинальное значение напряжения, а буквы обозначают в каких единицах измерения оно выражено.

Например, обозначение 160В или 160V показывает, что номинальное напряжение равно 160 вольт. Более высокие напряжения указываются в киловольтах – kV. На малогабаритных конденсаторах величину номинального напряжения кодируют одной из букв латинского алфавита. К примеру, буква I соответствует номинальному напряжению в 1 вольт, а буква Q – 160 вольт.

Дата выпуска

Согласно “ГОСТ 30668-2000 Изделия электронной техники. Маркировка”, указываются буквы и цифры, обозначающие год и месяц выпуска.

“4.2.4 При обозначении года и месяца сначала указывают год изготовления (две последние цифры года), затем месяц — двумя цифрами. Если месяц обозначен одной цифрой, то перед ней ставят нуль. Например: 9509 (1995 год, сентябрь).

4.2.5 Для изделий, габаритные размеры которых не позволяют обозначать год и месяц изготовления в соответствии с 4.2.4, следует использовать коды, приведенные в таблицах 1 и 2. Коды маркировки, приведенные в таблице 1, повторяются каждые 20 лет.”

Дата, когда было осуществлено то или иное производство, может отображаться не только в виде цифр, но и в виде букв. Каждый год имеет соотношение с буквой из латинского алфавита. Месяца с января по сентябрь обозначаются цифрами от одного до девяти. Октябрь месяц имеет соотношение с цифрой ноль. Ноябрю соответствует буква латинского типа N, а декабрю – D.

Маркировка конденсаторов

Правила маркировки конденсаторов постоянной ёмкости

При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов.

Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре.

Читать еще:  Коробка для конденсаторов на электродвигатель

Естественно, перед вторичным использованием необходимо проверить конденсаторы, особенно электролитические, которые сильнее подвержены старению.

При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает. Встаёт вопрос, как прочитать маркировку конденсатора?

У конденсатора существует несколько важных параметров, которые стоит учитывать при их использовании.

Первое, это номинальная ёмкость конденсатора. Измеряется в долях Фарады.

Второе – допуск. Или по-другому допустимое отклонение номинальной ёмкости от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается.

Третье, что указывается в маркировке, это допустимое рабочее напряжение. Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях.

Итак, разберёмся в том, как маркируют конденсаторы.

Одни из самых ходовых конденсаторов, которые можно использовать – это конденсаторы постоянной ёмкости K73 – 17, К73 – 44, К78 – 2, керамические КМ-5, КМ-6 и им подобные. Также в радиоэлектронной аппаратуре импортного производства используются аналоги этих конденсаторов. Их маркировка отличается от отечественной.

Конденсаторы отечественного производства К73-17 представляют собой плёночные полиэтилентерефталатные защищённые конденсаторы. На корпусе данных конденсаторов маркировка наноситься буквенно-числовым индексом, например 100nJ, 330nK, 220nM, 39nJ, 2n2M.


Конденсаторы серии К73 и их маркировка

Правила маркировки.

Ёмкости от 100 пФ и до 0,1 мкФ маркируют в нанофарадах, указывая букву H или n.

Обозначение 100n – это значение номинальной ёмкости. Для 100n – 100 нанофарад (нФ) — 0,1 микрофарад (мкФ). Таким образом, конденсатор с индексом 100n имеет ёмкость 0,1мкФ. Для других обозначений аналогично. К примеру:
330n – 0,33 мкФ, 10n – 0,01 мкФ. Для 2n2 – 0,0022 мкФ или 2200 пикофарад (2200 пФ).

Можно встретить маркировку вида 47HC. Данная запись соответствует 47nK и составляет 47 нанофарад или 0,047 мкФ. Аналогично 22НС – 0,022 мкФ.

Для того чтобы легко определить ёмкость, необходимо знать обозначения основных дольных единиц – милли, микро, нано, пико и их числовые значения. Подробнее об этом читайте здесь.

Также в маркировке конденсаторов К73 встречаются такие обозначения, как M47C, M10C.
Здесь, буква М условно означает микрофарад. Значение 47 стоит после М, т.е номинальная ёмкость является дольной частью микрофарады, т.е 0,47 мкФ. Для M10C — 0,1 мкФ. Получается, что конденсаторы с маркировкой M10С и 100nJ обладают одинаковой ёмкостью. Различия лишь в записи.

Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквой M, m вместо десятичной запятой, незначащий ноль опускается.

Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П или p после числа. Если ёмкость менее 10 пФ, то ставиться буква R и две цифры. Например, 1R5 = 1,5 пФ.

На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код. Вот, взгляните на фото.


Керамические конденсаторы с нанесённой маркировкой ёмкости числовым кодом

Например, числовая маркировка 224 соответствует значению 220000 пикофарад, или 220 нанофарад и 0,22 мкФ. В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах. Запись 221 означает 220 пФ, а запись 220 – 22 пФ. Если же в маркировке используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей. Так при 4722, ёмкость равна 47200 пФ – 47,2 нФ. Думаю, с этим разобрались.

Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой. Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости аналогично допуску по величине сопротивления у резисторов.

Буквенный код отклонения ёмкости (допуск).

Так, если конденсатор со следующей маркировкой – M47C, то его ёмкость равна 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H, M, J, K. Буква, обозначающая допуск указывается после значения номинальной ёмкости, вот так 22nK, 220nM, 470nJ.

Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости.

Как обозначаются конденсаторы на схеме?

Конденсаторы необходимы для накопления в себе энергии, с целью дальнейшей ее передачи далее по схеме в определенное время. Самый элементарный конденсатор состоит из пластин, сделанных из металла. Они называются обкладки. Также обязательно должен присутствовать диэлектрик, расположенный между ними. Каждый конденсатор имеет свою маркировку, которая наносится на него во время производства.

Любой человек, который занимается составлением схем и увлекается пайкой, должен понимать ее и уметь читать. В маркировке содержится вся информация о технических характеристиках данного конденсатора. Если к нему подключить питание, на обкладках конденсатора возникнет разнополярное напряжение и тем самым возникнет поле, которое будет притягивать их друг другу. Этот заряд накапливается между этими пластинами.

Основная единица измерения – фарады. Она зависит от размера пластин и расстояния между ними и величины проницаемости. В данной статье подробно рассмотрены все тонкости маркировки конденсаторов. Также статья содержит видеоролик и подробный файл с материалом по данной тематике.

Единицы измерения

Проще всего рассчитывается емкость плоского конденсатора. Если линейные размеры пластин-обкладок значительно превышают расстояние между ними то справедлива формула:

e – это величина электрической проницаемости диэлектрика, расположенного между обкладками.

  • S – площадь одной из обкладок(в метрах).
  • d – расстояние между обкладками(в метрах).
  • C – величина емкости вфарадах.

Что такое фарада? У конденсатора емкостью в одну фараду, напряжение между обкладками поднимается на один вольт, при получении электрической энергии количеством в один кулон. Такое количество энергии протекает через проводник в течении одной секунды, при токе в 1 ампер. Свое название фарада получила в честь знаменитого английского физика – М. Фарадея.

1 Фарада – это очень большая емкость. В обыденной практике используют конденсаторы гораздо меньшей емкости и для обозначения применяются производные от фарады:

  • 1 Микрофарада – одна миллионная часть фарады.10 -6
  • 1 нанофарада – одна миллиардная часть фарады. 10 -9
  • 1 пикофарада -10 -12 фарады.
Читать еще:  Типы отрезных кругов по металлу

Маркировка четырьмя цифрами

Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например, 1622 = 162*10 2 пФ = 16200 пФ = 16.2 нФ.

Буквенно-цифровая маркировка

При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:

15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ

Очень часто бывает трудно отличить русскую букву «п» от английской «n». Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например: 0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ.

Планарные керамические конденсаторы

Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой.

N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*10 1 пФ = 33пФ

S3 /по таблице S=4.7/ = 4.7*10 3 пФ = 4700пФ = 4,7нФ

Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.

Планарные электролитические конденсаторы

Электролитические SMD конденсаторы маркируются двумя способами:

1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.

2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах.

Полоска на таких конденсаторах указывает положительный вывод. Пример: по таблице «A» — напряжение 10В, 105 — это 10*10 5 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В

Маркировка конденсаторов, перевод величин и обозначения (пФ, нФ, мкФ)

Полезная информация начинающим радиолюбителям по маркировке конденсаторов, обозначениям и переводу величин – пикофарад, нанофарад, микрофарад и других. Пожалуй, трудно найти электронное устройство, в котором бы вообще не былоконденсаторов. Поэтому важно уметь по маркировке конденсатора определять его основные параметры, хотя бы основные -номинальную емкость и максимальное рабочее напряжение.

Несмотря на присутствие определенной стандартизации, существует несколько способов маркировки конденсаторов. Однако, существуют конденсаторы и без маркировки, – в этом случае емкость можно определить только измерив её измерителем емкости, что же касается максимального напряжения., здесь, как говорится, медицина бессильна.

Цифро-буквенное обозначение

Если вы разбираете старую советскую аппаратуру, то там все будет довольно просто, – на корпусах так и написано «22пФ», что значит 22 пикофарад, или «1000 мкФ», что значит 1000 микрофарад. Старые советские конденсаторы обычно были достаточного размера чтобы на них можно было писать такие «длинные тексты».

Общемировая, если можно так сказать, цифро-буквенная маркировка предполагает использование букв латинского алфавита:

  • p – пикофарады,
  • n – нанофарады
  • m – микрофарады.

При этом полезно помнить, что если за единицу емкости условно принять пикофарад (хотя, это и не совсем правильно), то буквой «p» будут обозначаться единицы, буквой «n» – тысячи, буквой «m» – миллионы. При этом, букву будут использовать как децимальную точку. Вот наглядный пример, конденсатор емкостью 2200 пФ, по такой системе будет обозначен 2n2, что буквально значит «2,2 нанофарад». Или конденсатор емкостью 0,47 мкФ будет обозначен m47, то есть «0,47 микрофарад».

Причем у конденсаторов отечественного производства встречается аналогичная маркировка в кириллице, то есть, пикофарады обозначают буквой «П», нанофарады – буквой «Н», микрофарады -буквой «М». А принцип тот же: 2Н2 – это 2,2 нанофарад, М47 – это 0,47 микрофарад. У некоторых типов миниатюрных конденсаторов «мкФ» обозначается буквой R, которая тоже используется как децимальная точка, например:

Небольшие замечания и советы по работе с конденсаторами

Необходимо помнить, что следует выбирать конденсаторы с повышенным номинальным напряжением при возрастании температуры окружающей среды,создавая больший запас по напряжению, для обеспечения высокой надежности. Если задано максимальное постоянное рабочее напряжение конденсатора, то это относится к максимальной температуре (при отсутствии дополнительных оговорок). Поэтому, конденсаторы всегда работают с определенным запасом надежности. И все-же, желательно обеспечивать их реальное рабочее напряжение на уровне 0,5—0,6 номинального.

Если для конденсатора оговорено предельное значение переменного напряжения, то это относится к частоте (50-60) Гц. Для более высоких частот или в случае импульсных сигналов следует дополнительно снижать рабочие напряжения во избежание перегрева приборов из-за потерь в диэлектрике. Конденсаторы большой емкости с малыми токами утечки способны долго сохранять накопленный заряд после выключения аппаратуры. Что бы обеспечить более быстрый их разряд, для большей безопасности, следует подключить параллельно конденсатору резистор сопротивлением 1 МОм (0,5 Вт).

Заключение

В высоковольтных цепях нередко применяют последовательное включение конденсаторов. Для выравнивания напряжений на них, необходимо параллельно каждому конденсатору дополнительно подключить резистор сопротивлением от 220 к0м до 1 МОм. Для защиты от помех, в цифровых устройствах применяется шунтирование по питанию с помощью пары – электролитический конденсатор большей емкости + слюдяной, либо керамический – меньшей. Электролитический конденсатор шунтирует низкочастотные помехи, а слюдяной( или керамический) – высокочастотные.

Более подробно о маркировке конденсаторов можно узнать здесь. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Маркировка конденсаторов

Самодельные электронные схемы собираются с применением конденсаторов, которые нужно правильно подобрать. К слову, могут быть использованы конденсаторы, уже бывшие в употреблении. Прежде чем применять их, следует тщательно проверить, в особенности это касается электролитических видов, сильно подверженных старению. В этой статье рассмотрим обозначение конденсаторов, и как они маркируются.

Особенности конденсаторов

Конденсаторами называют двухполюсники с переменным или определенным значением емкости и малой проводимостью. Отличительная черта изделия – оно обеспечивает накопление заряда и энергии электрического поля. Сам элемент применяется как пассивный электронный компонент. Конструкция не представляет ничего сложного – два электрода в виде пластин, которые разделены диэлектриком небольшой толщины. Все чаще применяются элементы, имеющие многослойные диэлектрики и электроды.

Существует большой выбор конденсаторов, которые находят применение в самых различных схемах. Чтобы грамотно подобрать параметры электросети, следует разобраться, как осуществляется маркировка керамических конденсаторов, – это ключевое их значение. Это не совсем просто, так как параметры могут существенно отличаться, в зависимости от компании-изготовителя, страны-экспортера, вида, размера и самих параметров элемента.

Читать еще:  Масло для четырехтактных двигателей с воздушным охлаждением

Керамические конденсаторы позволяют накапливать электрический заряд. Для измерения емкости используются особые единицы – фарады (F). Но стоит учесть, что одна единица фарада является большой величиной, которая не находит применения в радиотехнике. В случае с конденсаторами актуален микрофарад – это один фарад, поделенный на миллион. Почти что на всех элементах встречается обозначение мкФ. При ознакомлении с теоретическими расчетами иногда встречается миллифарад – фарад, деленный на тысячу. Для обозначения маленьких устройств используются нанофарады и пикофарады. Важно разбираться в обозначениях, чтобы подбирать правильные элементы.

Номиналы конденсаторов различаются, но для чего это на практике? Определенная емкость конденсатора требуется, если необходим выброс значительного количества энергии. То есть элемент позволяет высвободить за доли секунд немалый объем энергии, которая будет двигаться в том направлении, которое укажет человек.

Обозначение конденсаторов на схеме осуществляется при помощи двух параллельных отрезков, которые символизируют обкладки элемента с выводами от их середин.

Обратите внимание! На схеме рядом указывается буквенное обозначение устройства – буква С (от латинского Capacitor – конденсатор).

Каких видов бывают конденсаторы

  • Из бумаги или металлобумаги – применимы как для высоко-, так и низкочастотных цепей. Из-за небольшой механической прочности их «начинка» размещена в корпусе из металла;
  • Электролитические – их диэлектрик – тонкий слой оксида металла, который образуется в результате электрохимических манипуляций. Практически все виды данных элементов поляризованы, поэтому функционируют лишь в тех цепях, где есть постоянное напряжение, и соблюдается полярность. Если случается инверсия полярности, внутри элемента происходит необратимая химическая реакция, которая способна привести к его разрушению. Так как внутри выделяется газ, изделие может даже взорваться;
  • Полимерные – полимерный диэлектрик нивелирует раздутие и потерю заряда конденсаторов. Полимер характеризуется своими физическими параметрами, поэтому изделие имеет следующие достоинства: большой импульсный ток, низкий показатель эквивалентного сопротивления, стабильный температурный коэффициент даже в условиях низкой температуры;
  • Плёночные – диэлектриком здесь служит пластиковая пленка. Имеют немало преимуществ: способны функционировать при больших токах, прочные на растяжение и характеризуются минимальным током утечки. Применяются следующие виды пластика: полиэстер, поликарбонат, полипропилен. В последнее время все чаще применяется полифениленсульфид;
  • Керамические – такие изделия имеют различные свойства и кодировку. Лишь материалы, произведенные из керамики, обладают широким диапазоном значений относительной электропроницаемости (исчисляется десятками тысяч). Высокая проницаемость позволяет производить элементы компактных размеров, но большой емкости. При этом они способны функционировать при любой поляризации и характеризуются небольшими утечками. Параметры устройства зависят от температуры, напряжения и частоты;
  • С воздушным диэлектриком – диэлектрик устройств – воздух. Их особенность – отличная работоспособность при высоких частотах. По этой причине они нередко устанавливаются как конденсаторы с переменной емкостью.

Типы маркировок

Производители, выпуская конденсаторы, пользуются несколькими типами маркировок, которые располагаются непосредственно на корпусе элемента. Представленные ниже значения сугубо теоретические, в качестве наглядного примера:

  • Наиболее простым типом маркировки считается, когда ёмкость сразу указывается на теле конденсатора. То есть не применяются различные шифры и табличные замещения, вся необходимая информация содержится на корпусе. Данный способ был бы актуален для всех устройств, однако, не всегда его получается использовать в силу громоздкости. Для того чтобы предоставить полное обозначение емкости, подходят только довольно большие изделия, в ином случае рассмотреть цифры проблематично даже с применением лупы. На примере разберем запись 100 µF±6% – это ёмкость конденсатора 100 микрофарад, а амортизация 6% от общей емкости. В итоге значение – 94-106 микрофарад. В некоторых ситуациях применяется маркировка следующего вида: 100 µF +8%/-10% – это неравнозначная амортизация, 90-108 микрофарад. Подобная маркировка пленочных конденсаторов хоть и считается наиболее простой и понятной, но применима не во всех случаях из-за своей громоздкости. Как правило, она используется на больших приборах немалых ёмкостей;
  • Цифровая маркировка (или с использованием цифр и букв) актуальна, если площадь изделия слишком мала, чтобы на ней разместить подробную запись. Здесь для замены определенных значений применяются обычные цифры и латинские буквы, которые необходимо уметь расшифровывать. Если на поверхности изделия встречаются лишь цифры (как правило, их три), то чтение простое. Первые две цифры – так обозначается емкость. Третья цифра – число нулей, которые следует дописать после первых двух. Для измерения емкости подобных конденсаторов применимы пикофарады. В качестве примера ознакомимся с изделием, на теле которого размещена цифра 104. Оставляем первые цифры, к которым приписываются нули: в нашем случае это 4. В итоге имеем значение в 100000 пикофарад. Чтобы уменьшить число нулей, используется другое значение – микрофарады, которых в нашем случае 100. В некоторых ситуациях величина обозначается буквой. Например, 2n2 – 2.2 нанофарад. Чтобы определить, к какому классу принадлежит изделие, в конце дописывают дополнительную кодовую маркировку конденсатора, к примеру, 100V;
  • Маркировка импортных конденсаторов из керамики осуществляется с использованием букв и чисел – это стандарт для данных изделий. Алгоритмы шифрования аналогичны предыдущему методу. Надписи наносит сам производитель;
  • Цветовая маркировка конденсаторов тоже встречается, хотя и реже, так как данный способ несколько устарел. Ее применяли в советское время, что позволяло упростить считывание маркировки, даже если изделие было слишком маленьким. Здесь есть единственный недостаток – сразу запомнить обозначения проблематично, поэтому первое время рекомендуется иметь при себе специальную таблицу. Чтение маркировки выглядит так: первые два цвета – емкость в пикофарадах, третий цвет – число дописываемых нулей, четвертый и пятый цвета – номинал напряжения, подаваемого на изделие, и возможный допуск. Так, желтый прибор имеет обозначение цифрой 4, а синий – 6;
  • Импортные конденсаторы маркируются так же, а кириллица заменяется латиницей. К примеру, возьмем отечественный вариант с обозначением 5мк1 – 5.1 микрофарад. В случае с импортной кодовой маркировкой выглядеть будет как 5µ.

Важно! Если расшифровка непонятна, то следует обратиться к официальному производителю, на сайте которого, как правило, имеется соответствующая таблица.

Маркировка таких элементов, как конденсаторы, бывает самой разнообразной, и чем меньше элемент, тем компактнее следует размещать на нем данные. Благодаря современному производству, на устройства наносятся даже самые маленькие значения, расшифровывать которые можно, отталкиваясь от вышеописанных способов. Чтобы собранная электрическая цепь работала исправно, необходимо быть внимательным с полученными значениями, которые следует тщательно проверять.

Видео

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector