3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Термоэлектрический генератор своими руками

Что такое термоэлектрический генератор?

Согласно мировой статистике, от общего числа выработанной электроэнергии, на ТЭС приходится более 60%. Как известно, для работы тепловых электростанций необходимо органическое топливо, запасы которого не бесконечны. Помимо того, положенный в основу техпроцесс не является экологически чистым. Но низкая стоимость оргтоплива и высокий КПД ТЭС, позволяет получать «дешевое» электричество, что оправдывает применение данной технологии. Выход из сложившейся ситуации – альтернативные источники энергии, к таковым относятся термоэлектрические генераторы (далее ТЭГ), о них и пойдет речь в этой статье.

Что такое термоэлектрический генератор?

Так принято называть устройство, позволяющее преобразовать тепловую энергию в электрическую. Следует уточнить, что термин «Тепловая» не совсем точен, поскольку тепло, это способ передачи, а не отдельный вид энергии. Под данным определением подразумевается общая кинетическая энергия молекул, атомов и других структурных элементов, из которых состоит вещество.

Несмотря на то, что на ТЭС сжигается топливо для получения электричества, ее нельзя отнести к ТЭГ. На таких станциях тепловая энергия вначале преобразуется в кинетическую, а она уже в электрическую. То есть, топливо сжигается для получения из воды пара, который вращает турбину электрического генератора.

Схема работы ТЭС

Исходя из выше изложенного, следует уточнить, что ТЕГ должен генерировать электроэнергию без промежуточных преобразований.

Принцип работы

В основе ТЭГ лежит термоэлектрическое явление, описанное в начале 20-х годов XIX века немецким ученым-физиком Томасом Иоганном Зеебеком. Он обнаружил появление ЭДС в цепи замкнутого типа, состоящей из проводника и сурьмы, при условии создания разности температур в местах, где эти материалы контактируют. Изображение устройства, при помощи которого был зафиксирован данный эффект, представлено ниже.

Термопара из опыта Зеебека

Обозначения:

  • 1 – медный проводник.
  • 2 – проводник из сурьмы.
  • 3 – стрелка компаса.
  • А и В – места контакта двух проводников.

При нагревании одного из контактов стрелка отклонялась, что свидетельствовало о наличии магнитного поля, вызванного ЭДС. При нагреве другого контакта, направление ЭДС менялось на противоположное. Соответственно, при разрыве цепи, можно зафиксировать разность потенциалов на ее концах.

Через 12 лет, после публикации Зеебеком результатов своих опытов, французским физиком Жаном Пельтье был обнаружен обратный эффект. Если через цепь термопары пропускать ток, то в местах контакта этих веществ возникает разность температур. Мы не будем приводить описание опыта Пельтье, а также данные по современным одноименным элементам, эту информацию можно найти на нашем сайте.

По сути, оба эти эффекта обратные стороны одного термоэлектрического явления, позволяющего напрямую получать электричество из тепловой энергии. Но, до открытия полупроводников, термоэлектрический эффект не находил практического применения, ввиду неприемлемо низкого КПД. Поднять его до 5% удалось только в середине пошлого века. К сожалению, даже у современных полупроводниковых элементов, этот показатель остается на уровне 8%-12%, что не позволяет рассматривать генераторы данного типа в качестве серьезных конкурентов ТЭС.

Современный элемент Пельтье с указанием размеров

Перспективы

В настоящее время продолжаются опыты по подбору оптимальных термопар, что позволит увеличить КПД. Проблема заключается в том, что под данные исследования затруднительно подвести теоретическую базу, поэтому приходится полагаться только на результаты экспериментов. Учитывая, что на эффект влияет процентное соотношение и состав сплавов материала для термопар, говорить о ближайших перспективах неблагодарное занятие.

Велика вероятность, что в ближайшее время для повышения добротности термоэлементов, разработчики перейдут на другой уровень изготовления сплава для термопар, с использованием нано-технологий, ям квантования и т.д.

Вполне возможно, что будет разработан совершенно иной принцип с использованием нетрадиционных материалов. В качестве примера можно привести эксперименты, проводимые в Калифорнийском университете, где для замены термопары использовалась искусственная синтезированная молекула, которая соединяла два золотых микро проводника.

Молекула вместо термопары

Первые опыты показали возможность реализации идеи, насколько она перспективна, покажет время.

Сфера применения и виды термоэлектрических генераторов

В виду низкого КПД для ТЭГ остается два варианта применения:

  1. В местах, где недоступны другие источники электроэнергии.
  2. В процессах, где имеется избыток тепла.

Приведем несколько примеров таких устройств.

Энергопечи

Данные, устройства, совмещающие в себе следующие функции:

  • Варочной поверхности.
  • Обогревателя.
  • Источника электроэнергии.

Это прекрасный образец, объединяющий все оба варианта применения.

Индигирка – три в одном

У представленной на рисунке энергопечи следующие параметры:

  • Вес – чуть больше 50 килограмм (без учета топлива).
  • Размеры: 65х43х54 см (с разобранным дымоходом).
  • Оптимальная загрузка оргтоплива – 30 литров. Допускается использование лиственной древесины, торфа, бурового (не каменного!) угля.
  • Средняя тепловая мощность устройства около 4,5 кВт.
  • Мощность электронагрузки от 45-50 Вт.
  • Стабилизированное постоянное напряжение на выходе – 12 В.

Как видите, эти параметры вполне приемлемы для условий, где нет электричества, отопления и газа. Что касается небольшой электрической мощности, то ее вполне достаточно для зарядки мобильных устройств или питания других гаджетов, через адаптер от автомобильного прикуривателя.

Радиоизотопные ТЭГ

В качестве источника тепла для ТЭГ может выступать тепловая энергия, выделяющаяся в процессе распада нестабильных элементов. Такие источники называют радиоизотопными. Основное их преимущество заключается в том, что не требуется постоянная загрузка топлива. Недостаток – необходимость установки защиты от ионизирующего излучения, невозможность перезаправки топлива и необходимость утилизации.

Срок эксплуатации таких источников напрямую зависит от периода полураспада вещества, используемого в качестве топлива. К последнему предъявляется следующий ряд требований:

  • Высокий коэффициент объемной активности, то есть небольшое количество вещества должно обеспечивать нужный уровень выделения энергии.
  • Поддержка необходимого уровня мощности в течение длительного времени. На этот параметр отвечает, как было отмечено выше, влияет период полураспада, например у стронция-90 он 29 лет, следовательно, источник через это время потеряет половину своей мощности.
  • Ионизирующее излучение должно быть удобным для утилизации, то есть в нем должны преобладать α-частицы.
  • Необходимый уровень безопасности. То есть ионизирующее излучение не должно нанести вред экологии (в случае эксплуатации на земле) и питающемуся от такого источника оборудованию.

Таким критериям отвечают изотопы кюрия-244, плутония-238 и упоминавшийся выше стронций-90.

Сфера применения РИТЕГ

Несмотря на серьезные требования к таким источникам, сфера их применения довольно разнообразна, они используются как в космосе, так и на земле. Ниже на фото, изображен РИТЕГ, работавший на космическом аппарате Кассини. В качестве топлива использовался изотоп плутония-238. Период полураспада этого элемента чуть больше 87 лет. Под конец 20-ти летней мисси источник вырабатывал 650 Вт электроэнергии.

Радиоизотопное «сердце» Кассини

Кассини была приведена в качестве примера, а на счет массовости можно констатировать, что, практически, все КА для электропитания оборудования используют РИТЕГ. К сожалению, характеристики радиоизотопных источников энергии космических аппаратов, как правило, не публикуются.

На земле ситуация приблизительно такая же. Технология РИТЕГ как бы известна, но ее детали относятся к закрытой информации. Достоверно известно, что такие установки применяются в качестве источника питания навигационного оборудования в местности, где по техническим причинам невозможно получать электроэнергию другим способом. То есть, речь идет о труднодоступных регионах.

К сожалению, такие источники не самая подходящая альтернатива ТЭС с экологической точки зрения.

РИТЕГ поднятый с 14-митровой глубины возле Сахалина

Как сделать термоэлектрический генератор своими руками?

В завершении расскажем, как сделать ТЕГ, которым можно пользоваться в турпоходе, на охоте или рыбалке. Естественно, мощность таких устройств будет уступать радиоизотопным генераторам энергии, но ввиду труднодоступности плутония, и его неприятным свойством наносить вред человеческому организму придется довольствоваться малым.

Нам понадобится термоэлектрический элемент, например, ТЕС1 12710. Желательно использовать несколько элементов, подключенных параллельно, для увеличения мощности. К сожалению, тут есть очень серьезный нюанс, потребуется подобрать элементы со сходными параметрами, что у китайской продукции практически не реально, а использовать брендовую дорого, проще купить готовый генератор. Если использовать один модуль Пельте, то его мощности едва хватит для зарядки телефона или другого гаджета. Нам также понадобится металлический корпус, например, отслужившего блока питания ПК и радиатор от процессора.

Читать еще:  Генератор с авр и автозапуском

Основные моменты сборки:

Наносим на корпус термопасту в месте, где будет крепиться термоэлектрический элемент, прислоняем его и фиксируем радиатором. В результате у нас получается конструкция, как на нижнем рисунке.

Туристический ТЭГ

В качестве топлива лучше всего использовать «сухой спирт».

Теперь необходимо подключить к нашему источнику стабилизатор напряжения (схему можно найти на нашем сайте или в других тематических источниках).

Конструкция готова, можно приступать к проверке.

Термоэлектрический генератор(ТЭГ) на модулях Пельтье

Приветствую всех читателей. В предыдущей теме:Автономная солнечная система в Подмосковье я упомянул про свой ТЭГ, который помогает при отсутствии солнца. В комментариях люди просили на этом остановиться подробнее. Вот, вспомнил, что да как. И отвечаю. Сперва идут мои материалы с Форумхауса многолетней давности. Не все, а для понимания.

Итак, год назад, перед ноябрьским отключением электричества, я сваял примитивный термоэлектрический агрегат из одного модуля Пельтье из Вольтмастера, самый дешёвый на 127 ватт холода. Особенности таких модулей — эффективность в генерации 2-3%, максимальная температура нагрева — 150 градусов Цельсия. Из разнообразных обрезков(см. фото)

алюминия склеил/скрутил вокруг модуля два радиатора — один(нижний) на печку для уменьшения температуры, поступающей к модулю, второй — сверху для быстрейшего охлаждения холодной стороны модуля. Оговорюсь, что в охлаждении не силён совсем, посему лепил алюминь, как попало.
Весь агрегат ставился на печку( печь-шведка), точнее на её чугунную плиту, перед растопкой(температура чугунины максимум-до 250 градусов). Эффективная температура на плите держится около 3 часов, средняя выработка энергии в эти часы — 2-2.5 ватт/час. За одну топку получается около 6 ватт энергии кошкины слёзы. Печь топилась каждый день, поэтому в месяц выходило что то около 200 ватт. К выводам агрегата крокодилами подключался простой стабилизатор( из набора e-kits) и потом заряжались пальчиковые батарейки.
В таком виде, в силу маломощности, перспектив я не увидел

Были приобретены модули Пельтье американские от Thermal Enterprises ( вот такие: Model CP1-12730
62mm x 62mm x 3.8mm
Maxiumu power consumption 545 Watts
Operates from 0-16 volts DC and 0-32 amps
Operates from -60 deg C to +180 deg C
Each device is fully inspected and tested
Fitted with 6-inch insulated leads
Perimeter sealed for moisture protection)
Блок из 4 шт этих Гигантиков, соединённых последовательно. Общая тепловая мощность 2180Вт. Радиатор снизу и сверху алюминий+ вентилятор большой.
Подключены были первый год к большому контроллеру (на фото), во второй год — к малому (на фото 30А), все подключения шли через ваттметры (на фото), люблю я их, удобно. Вот мощность с них и снимал — правый нижний угол — мощность на данный момент, левый нижний общая выработка.
0ватт — когда печь холодная, потом постепенное увеличение до прим 30ватт (максимум, что наблюдал, без записи это 37ватт), потом остывание и опять 0 ватт.

Все что выше — это цитаты с Форумхауса 2011-2014 годов.
Теперь о том, что есть сейчас. И о опыте.
Маленький и маломощный ТЭГ на одном элементе Пельтье сгорел на второй год. Не предназначены они все таки для печки. А вот большой блок из мерканцев вполне живой

Хотя года два я его и не доставал. Расчехлил его только в декабре 19-го. Солнца было мало и в качестве малой поддержки покатил.
Итак конструкция: четыре элемента, последовательно соединённых, между двумя ал.радиаторами. Нижний радиатор для того, чтобы немного снизить температуру чугунины, а верхний, чтобы рассеять побыстрей максимум. Сверху ручка. Снял-поставил обратно. Провода на автомат

А с него, через DC-DC преобразователь, на аккумуляторы.
В первые года крепилась еще стойка с вентилятором для обдува радиатора, но потом выкинул ее. Не нужна. Проще передвинуть по чугунине печки куда нибудь на край. Там где похолодней.
Этой зимой топлюсь осиной и липой в основном, а от них жара мало. И чугунина особо и не разогревается. Почти нужные 180 градусов и есть.
Теперь по выработке. Жить на такой выработке невозможно. Только в качестве хобби или для малой подзарядки аккумуляторов.
Реальный КПД на производство энергии с них, при дельте в 60градусов — 2,4%. То есть от 2 с лишним штатных киловатт остается 52 ватт в час.
У меня при средней топке в 2.5-3 часа, идет выработка энергии до 5 часов(вместе с остыванием). И суточная выработка от 140 до 190 ватт. В месяц около 5квт.
Последние года я забросил эту игрушку, потому как и ветряк и солнечные батареи даже зимой дают на порядок больше, но в этом году как-то звезды неудачно сошлись. И контроллер ветряка полетел. Пришлось две недели новый ждать. И солнца до нового года почти не было. Поэтому и вытащил с антресоли этот агрегат.
Но на 21 января он опять закинут на антресоль.

PS стоили 8 лет назад такие штатовские элементы на ебэе 25$. Сейчас таких не видел, только гонконгские.

PPS есть у меня почти со школьных лет приятель Витя. Человек очень сложной судьбы. Сейчас он вроде как бомж. И живет в основном рядом или под или над тепломагистралями. Вот ему я подарил пять лет назад такую установку. Бочины трубы больше 100 градусов, и 24 часа в сутки. Теперь Он с нотебуком не расстается. И лампочка светит постоянно.

приятель витя пикабушник по-любому..))

ахаха модер скорее)

Все это полная хуйня, уж извини афтар. В свое время рассчитывал, но учитывая КПД пельтьешек на генерацию даже на стадии расчета получается полная хуйня.

У меня при средней топке в 2.5-3 часа, идет выработка энергии до 5 часов(вместе с остыванием). И суточная выработка от 140 до 190 ватт. В месяц около 5квт.

Ну во первых не ватт — а ватт/ч. 5 квт/ч стоят для сельской местности рубля 3 за штуку — и того за ГОД — 12*5*3 = 225р — на такую сумму можно нагенерить за целый год, это же почти 4$. Круто, учитывая что один элемент стоит 25$ — можно за 6 лет отбить, если не сгорит.

Во вторых — он скорее всего сгорит, так как надо во первых его не перегреть, а во вторых стремится максимально нагреть — как контролить нагрев, нууу я ваще хз. А насколько помню — паяны они низкотемпеатурным припоем. Нагревать нужно по максимуму — нужна дельта как можно больше с холодной стороной, которую нужно снабжать гигааантским радиатором если в него реально запулить 2квт ))) С радиаторм и некоторой системой контроля нагрева вся эта шарабайка не отобъется и за 50 лет.

ПыСы: у мну была идея для походного генератора от костра, при чем была мысля делать что-то типа котла с кипящей водой, что не давало бы элементам перегреться.

Вот что за привычка, с первых слов матюгаться, как малолетка. Зачем оно здесь?

Во-первых если быть точным, то никаких ватт/ч или квт/ч тем более не существует. Вы ошиблись. Если писать точно, то только ватт*ч и квт*ч. На профильном ресурсе так бы и написал, но Пикабу ресурс в основном развлекательный и упрощённый. Поэтому, чтобы не заморачивать читателям голову и написал, как было.

Во-вторых, если вы читали заметку, то должны были заметить, что вопрос окупаемости и подключения к центральным сетям не стоит, так как центрального электричества нет совсем. Дом стоит в полной автономии от МОЭСК.

В-третьих, не сгорел за восемь лет. Это уже не теория.

В-четвёртых, дельта по максимуму, как раз вредна. Делал я к нему водяное охлаждение, и обдув, и много чего ещё, восемь лет назад, но всё смысла нет. Идеальная дельта, как я написал в заметке 60 градусов. Будет больше — выработка резко снижается.

В-пятых, это и не делалось, как выше было сказано, с оглядкой на окупаемость.

Похоже у автора холодная сторона не совсем холодная. А если холодную сторону до уличной остудить, пельте не полетит? Ну типа +50 — (-20) = 70градусов к примеру

Не полетит — у него паспортный КПД не выше 20% (могу пиздеть, пишу по памяти).

Но паспортный это в идеальных условиях, что вряд ли получится сделать без сложных заморочек. Теперь на пальцах — афтар пишет про модель 540вт — вычитаем 20% КПД которое пойдет на эл-во, остается 430вт которые нужно рассеять с холодной стороны, причем рассеять быстро. Если использовать пассивный конвекционый радиатор (чтобы энергию на вентилятор не тратить), то (опять же если не путаю) рекомендуется МИНИМУМ 10-15см2 площади ребер на 1вт для охлада. 430*10=4300см2=0.43м2 те минимальный радиатор нужен с площадью поверхности под полметра квадратного минимум, а лучше метр. Если кулер будет пассивный — то это нехилая такая вещь, раз в пять больше самого большого компутерного.

Читать еще:  Аппарат для пескоструйной обработки металла

ПыСы: как холодную сторону охлаждать на улице если печь в доме — я хз, не двух метровую же тепловую трубу делать.

в далеком будущем когда сделают ткань с таким эффектом то одевшись в одежду из неё можно будет собирать с тела человека энергию, охлаждать в жару и обогревать в холод

вот есть аэрогель материал с очень малой теплопроводимостью, вот бы его внутрь Пелтешки чтоб он не давал одной стороне так сильно нагреваться от другой

а сейчас это баловство не больше

ГыГы. Как он не даст ей сильно нагреваться, он вообще потом тепла перекроет и все.

Читать невозможно! Автор, купи букварь!

Нет, это не Криотермовские модули. Для каждого модуля паспорт с датой и место производства. Мои то ли Калифорния, то ли Коннектикут ( CA or CO). Во всяком случае в 2011 было так.

что мешает купить еще пару модулей или всю печь ими облепить? если она постоянно топится.

Ага, и трястись как бы не сунуть лишнее полено.

Во, блин! Это с печи можно ещё и электричество вырабаттывать? Круто!

А я думал элементы Петлье только в системах охлаждения используются.

У меня же печка до красна раскаляется когда угля засыпаю. Надо тоже собрать такую штуковину!

Может и есть такие, что «до красна» держат, но я про них не слышал. Максимум градусов 200. Потом разваливаются.

Там низко температурный припой, плюс полупроводник — 180С афтар выше пишет, все сходится.

Что за говняный монтаж на последней фотке?

какой есть, извините.

Автономная солнечная система в Подмосковье

Здравствуйте. Буквально вчера поднимал эту тему: Солнышко на новый год и на удивление появилось много вопросов и просьб разъяснить особенности: #comment_157927435. Многое ответил в комментариях. Здесь просто объединяю и дополняю.
Солнечная система состоит из двух независимых блоков. Первый из 15 панелей по 100ватт. Второй из ветряка на 400 ватт и панелей на 280 ватт. Отдельно в доме, в качестве аварийной палочки-выручалочки на темные дни, расположена сборка ТЭГ термогенератор на элементах Пельтье. Весь декабрь очень выручает. Про ветряк я на пикабу уже писал год назад: Про ветряк в развитие сюжета.
Управляются блоки также порознь двумя MPPT контроллерами. Один тайваньский MPP Solar на 60А, другой американский OutBack 80A: https://shop.solarhome.ru/outback-flexmax-80-kontroller-zary. . Инверторов на 220 тоже два. От немецкой Солартроникс на 1 и 2 квт. Проводок параллельных тоже две: на 12/24 и на 220 вольт. Вот такой я извращенец.
Система собиралась с 2010 года по 2015-й. Последние 4.5 года ничего не менялось.
Аккумуляторы Leoch 12/100 8 штук свинец. Работают кстати уже с 2013 года, не нарадуюсь. Аккумуляторы Deka 12/100 4 штуки тоже свинец. Похуже.
Лампы освещения везде светодиодные на 12 вольт, чаще самопайки-самоделки, реже покупные.
Телевизор и ноутбуки с зарядками подключены в низковольтовую сеть через прикуриватели.
На инверторной сети 220 вольт живет только холодильник А+ и насосы колодезные и в доме.
За 10 лет автономной жизни поменял много разных элементов системы. Могу многое сказать про аккумуляторы Delta- г.вно, заливка Пентэласт- г.вно, китайские аналоги немецких контроллеров- г.вно. Литиевые батареи неразумно. Много было выкинуто денег псу под хвост, но это в прошлом.
Цена всех компонентов в современных условиях примерно 250-300 тысяч плюс работа.
В условиях Подмосковья такая конфигурация даёт избыток энергии с февраля по октябрь включительно. Для любых нужд. Проблемы возникают с ноября по январь. Самые проблемы с 20 ноября по 20 января. Это усредненно за десять лет.
Летом же ветряк чаще стоит отключенным, также изредка включаю панели. Электричества больше, чем я могу съесть.
Мои потребности в электричестве зимой ужимаются до 60 квтч в месяц. Летом трачу 250-300 квтч. Если вести активно стройку, то до 1000 квтч в месяц. Система это позволяет. Свет, ноутбук, насосы, вентиляция, телевизор, зарядки, холодильник работают штатно всегда.

PS Если вы привыкли к электропечке/духовке, электрочайнику, микроволновке, утюгу, мощному холодильнику. Т.е. к любому мощному потребителю более 1.5 квт, то эта система не потянет ваши потребности. Только летом. Если же вы сможете без этого обходиться, то система может работать круглый год.

PPS Сделал такую систему не потому, что выпендрежник или денег некуда девать, а потому, что СНТ отключает свет на полгода, а МОЭСК не вмешивается. Судиться не прельщает. Тянуть собственную линию за 1.5 км и ставить свой трансформатор намного дороже. Слушать тарахтящий генератор на природе не хочется. Поэтому и получилось, что получилось.

PPPS Вроде приняли закон о микрогенерации и отдаче в сеть. Весной поинтересуюсь, посчитаю и может быть займусь этим.

Солнышко на новый год

С Новым Годом вас, люди. У нас тоже вот радость, незамечаемая многими. Утром 1 января вылезло из-за опостылевших туч и облаков, ласковое солнце

С 29 ноября в Подмосковье солнца не было от слова совсем. Ночью иногда звезды мелькали, и утром вроде полоса зари пробивалась, но днем все затягивали гадкие тучи. И моя солнечная система стояла мёртвой. Ни ватта на накопители. Только ветряк и спасал от разряда аккумуляторов.

Благо ветренных дней было много.
Теперь и солнце почаще будет радовать. Зима повернула. День пошёл прибавляться.
Желаю всем в новом году побольше счастливых солнечных дней. И мирного неба над головой

Термоэлектрический генератор

Огромное количество электронных устройств поглощает электрическую энергию, которую надо постоянно возобновлять. Находясь в пути, приходится возить с собой химические источники тока или вырабатывать электричество из механической энергии с помощью сложных и громоздких приспособлений.

Вид термоэлектрического генератора

Ещё раньше Зеебек обнаружил возникновение термо-ЭДС в цепи из разнородных проводников при поддерживании разной температуры в месте контакта. На основании термоэлектрических эффектов был создан так называемый элемент или модуль «Пельтье», представляющий собой 2 керамические пластины с расположенным между ними биметаллом. При подаче через них электрического тока, одна сторона пластины нагревается, а другая охлаждается, что позволяет создавать из них холодильники. На рисунке ниже изображены модули разных размеров, применяемые в технике.

Модули «Пельтье» разных размеров

Процесс является обратимым: если поддерживать температурный перепад на элементах с обеих сторон, в них будет вырабатываться электрический ток, что позволяет использовать устройство как термоэлектрический генератор для выработки небольшого количества электроэнергии.

Эффект «Пельтье» заключается в выделении тепла в месте контакта разнородных проводников при протекании по ним электрического тока.

Принцип действия модулей

На контакте разнородных проводников происходит выделение или поглощение тепла в зависимости от направления электрического тока. Поток электронов обладает потенциальной и кинетической энергией. Плотность тока в контактирующих проводниках одинакова, а плотности потоков энергии отличаются.

Если энергия, втекающая в контакт, больше энергии, вытекающей из него, это означает, что электроны тормозятся в месте перехода из одной области в другую и разогревают кристаллическую решётку (электрическое поле тормозит их движение). Когда направление тока меняется, происходит обратный процесс ускорения электронов, когда энергия у кристаллической решётки забирается и происходит её охлаждение (направления электрического поля и движения электронов совпадают).

Энергетическая разность зарядов на границе полупроводников самая высокая и в них эффект проявляется наиболее сильно.

Модуль «Пельтье»

Больше всего распространён термоэлектрический модуль (ТЭМ), представляющий собой полупроводники p-, и n-типов, соединённые между собой через медные проводники.

Схема принципа работы модуля

В одном элементе существует 4 перехода между металлом и полупроводниками. При замкнутой цепи поток электронов перемещается от отрицательного полюса АКБ к положительному, последовательно проходя через каждый переход.

Вблизи первого перехода медь – полупроводник p-типа происходит тепловыделение в полупроводниковой зоне, поскольку электроны переходят в состояние с меньшей энергией.

Вблизи следующей границы с металлом в полупроводнике происходит поглощение теплоты, в связи с «высасыванием» электронов из зоны р-проводимости под действием электрического поля.

На третьем переходе электроны попадают в полупроводник типа n, где они обладают большей энергией, чем в металле. При этом происходит поглощение энергии и охлаждение полупроводника около границы перехода.

Последний переход сопровождается обратным процессом тепловыделения в n-полупроводнике из-за перехода электронов в зону с меньшей энергией.

Поскольку нагревающиеся и охлаждающиеся переходы находятся в разных плоскостях, элемент «Пельтье» сверху будет охлаждаться, а снизу нагреваться.

Читать еще:  Как узнать дает ли генератор зарядку

На практике каждый элемент содержит большое количество нагревающихся и охлаждающихся переходов, что приводит к образованию ощутимого температурного перепада, позволяющего создать термоэлектрогенератор.

Как выглядит структура модуля

Элемент «Пельтье» содержит большое количество полупроводниковых параллелепипедов p-, и n-типов, последовательно соединённых между собой перемычками из металла – термоконтактов, другой стороной соприкасающихся с керамической пластиной.

В качестве полупроводников применяется теллурид висмута и германид кремния.

Достоинства и недостатки ТЭМ

К преимуществам термоэлектрического модуля (ТЭМ) относят:

  • малые размеры;
  • возможность работы, как охладителей, так и нагревателей;
  • обратимость процесса при смене полярности, позволяющая поддерживать точное значение температуры;
  • отсутствие подвижных элементов, которые обычно изнашиваются.

Недостатки модулей:

  • малый КПД (2-3%);
  • необходимость создания источника, обеспечивающего температурный перепад;
  • значительное потребление электроэнергии;
  • высокая стоимость.

Несмотря на недостатки, ТЭМ применяются там, где большие энергозатраты не имеют значения:

  • охлаждение чипов, деталей цифровых фотокамер, диодных лазеров, кварцевых генераторов, инфракрасных детекторов;
  • использование каскадов ТЭМ, позволяющих добиться низкой температуры;
  • создание компактных холодильников, например, для автомобилей;
  • термоэлектрогенератор для зарядки мобильных устройств.

Термоэлектрический генератор

При малой производительности ТЭГ целесообразно применять в походных условиях, где требуется получить электричество для зарядки сотового телефона или светодиодной лампочки. Простота конструкции позволяет изготовить электрогенератор своими руками.

Альтернативными источниками также являются солнечные батареи или ветрогенератор. Для первых требуются особые условия – наличие солнечного освещения, которое может быть не всегда. Другой источник имеет большие габариты и для него необходим ветер. Ещё одним недостатком у них является наличие подвижных частей, снижающих надёжность и имеющих большой вес.

Термогенераторы промышленного изготовления

Компания BioLite разработала новую модель для походов, позволяющую готовить пищу в компактной переносной печке на дровах и одновременно заряжать мобильное устройство от встроенного ТЭГ.

Компактная переносная печка на дровах

Устройство пригодится везде: на рыбалке, в походе, на даче. В качестве топлива можно применять всё, что горит.

При сгорании в топке топлива тепло передаётся через стенку модулю, который вырабатывает электричество. При напряжении 5В, мощность на выходе составляет 2-4 Вт, чего вполне хватает для зарядки многих типов мобильных устройств и работы освещения на светодиодах. Красной стрелкой изображено направление движения тепла, синей – холодного воздуха в топку, жёлтыми – подача электричества на вращение вентилятора подсоса воздуха и на выход генератора через USB.

Схема работы ТЭГ компании BioLite на дровах

Печь-генератор «Индигирка», разработанная петербургским предприятием Криотерм, имеет характеристики:

  • тепловая мощность – 6 кВт;
  • вес – 56 кг;
  • габариты – 500х530х650 мм;
  • эл. мощность при напряжении 5В – 60 Вт.

Печь является обычной отопительно-варочной, где с двух сторон закреплены термоэлектрогенераторы.

Как выглядит печь-термоэлектрогенератор «Индигирка»

Устройство довольно удобное, но впечатляет цена – 50 тыс. руб. Хоть печь, и предназначена для походных условий, но рядовым охотникам и рыболовам она будет явно не по карману. Как отопительная, она ничем не лучше обычных и более дешёвых моделей.

Если пристроить ТЭГ к простой печи, устройство, изготовленное своими руками, будет работать отлично.

ТЭГ своими руками

Чтобы термоэлектрический генератор собрать своими руками, необходимы следующие элементы:

  1. Модуль. Для генерирования электрического тока можно применять не все модули, а только те, которые способны выдержать нагрев до 300-400 0 С. Наличие запаса по нагреву необходимо, поскольку даже при незначительном перегреве элемент выходит из строя. Наиболее распространены модели типа ТЕС1-12712 в виде квадратных пластин с размером стороны 40, 50 или 60 мм.

Если взять максимальный размер, достаточно в конструкции, сделанной своими руками, применить один элемент. Первые 3 цифры маркировки – 127 означают, сколько элементов содержится в 1 пластине. Последние цифры показывают величину максимально допустимого тока, который составляет 12 А.

  1. Повышающий преобразователь. Он необходим для получения постоянного напряжения 5В. Генератор может выдавать меньшее напряжение, которое необходимо увеличить. Устройства выпускают зарубежные (типы 5V NCP1402 и MAX 756) и отечественные (3.3В/5В ЕК-1674). Для зарядки мобильника следует подобрать устройство с USB разъёмом.
  2. Нагреватель. Простейшими вариантами являются костёр, свеча, самодельная лампа или миниатюрная печка.
  3. Охладитель. Проще всего применять воду или в зимнее время – снег.
  4. Соединительные элементы. Необходимо оборудование для создания максимально возможного температурного перепада между двумя сторонами пластины. Здесь выбор за умельцами, они чаще всего применяют 2 кружки или кастрюли разных размеров, у которых отпиливаются ручки и где одна вставляется внутрь другой. Между ними помещается модуль и крепится на термопасту. К нему припаиваются 2 провода и подключаются к преобразователю напряжения.

Для повышения КПД генератора, днища металлических поверхностей кружек или кастрюль, контактирующие с пластиной генератора, следует отполировать. Кроме того, на места между донышками меньшей и большой кружек наносится термостойкий герметик. Тогда тепло от нагрева будет локализовано в месте нахождения модуля.

Провода между модулем и преобразователем защищаются термостойкой изоляцией и герметиком.

Во внутреннюю кружку наливается вода, и вся конструкция ставится на огонь. Через несколько минут можно проверить выходное напряжение мультиметром.

Для того чтобы собрать термоэлектрический генератор самостоятельно, понадобятся материалы:

  1. элемент «Пельтье»;
  2. корпус от старого блока питания компьютера для изготовления мини-топки;
  3. преобразователь напряжения с USB выходом на 5В при входном 1-5 В;
  4. радиатор с кулером от процессора;
  5. термопаста.

Затраты здесь небольшие и устройство вполне способно зарядить мобильный телефон. Генератор, собранный своими руками, является аналогом зарубежной модели фирмы BioLite. Если его собрать аккуратно, устройство будет надёжно работать долгое время, поскольку ломаться здесь нечему. Важно только не перегреть элемент «Пельтье», отчего он может выйти из строя.

При использовании куллера для охлаждения радиатора его следует подключить к генератору, после чего часть вырабатываемой энергии будет расходоваться на охлаждение.

Несмотря на дополнительные энергозатраты, КПД установки возрастёт. Если радиатор будет сильно нагреваться в процессе работы, необходимо принять меры по его охлаждению. Иначе эффективность работы генератора будет низкой.

Характеристики генератора следующие:

  • выходное напряжение – 5В;
  • мощность нагрузки – 0,5А;
  • тип выхода – USB;
  • топливо – любое.

Устройство изготавливается следующим образом:

  • разобрать блок питания, оставив корпус;
  • приклеить термопастой модуль «Пельтье» к радиатору. Клеить надо холодной стороной, где нанесена маркировка;
  • зачистить и отполировать наружную боковую поверхность корпуса блока питания и приклеить к ней элемент другой стороной (вместе с радиатором);
  • припаять провода от входа преобразователя напряжения к выводам пластины.

Проверить ТЭГ можно, если наложить внутрь топки тонких веточек и поджечь их. Через несколько минут можно подключать телефон, для подзарядки которого требуется разница температуры сторон модуля 100 0 С. На рисунке ниже изображён генератор в сборке.

Термоэлектрогенератор в сборке, изготовленный своими руками

При использовании ТЭГ необходимо соблюдать полярность подключения модулей.

Видео. Термоэлектрический генератор

Эффект «Пельтье» позволяет создать небольшие генераторы и холодильники, работающие без подвижных частей. Повышение качества модулей и снижение энергопотребления мобильных устройств позволяет создать своими руками термоэлектрогенератор для зарядки аккумуляторов и снабжения небольшим количеством энергией различные устройства, где КПД не имеет особого значения.

Термогенератор своими руками

Привет всем любителям самоделок. Не для кого не секрет, что энергию можно получить не только посредством преобразования механической в электрическую, но и при помощи преобразования тепловой энергии. Зачем такие преобразования, спросите вы, тут все просто, данный способ хорошо подойдет для походов и других мест, где нет электричества и нет желания крутить ручку генератора. В этой статье я расскажу, как сделать термогенератор с наименьшими затратами и обеспечить себе зарядку телефона или любого другого маломощного гаджета в походных условиях вдали от розетки.

Перед прочтением подробной сборки данной самоделки, предлагаю посмотреть видео, где наглядно показан весь процесс и тестирование готового устройства.

Для того, чтобы сделать термогенератор своими руками, понадобится:
* Элемент Пельтье
* DC преобразователь, который повысит напряжение до 5 вольт
* Два алюминиевых радиатора, один поменьше, другой побольше
* Источник тепловой энергии, в данном случае спирт
* Термопроводящая паста КПТ-8 для лучшей теплопередачи
* Клей универсальный, типа «секунда»
* USB-Ваттметр
* Нагрузка для проверки работы, в данном случае смарт-часы
* Паяльник, припой

Вот и все, что нужно для сборки данной самоделки, все достаточно бюджетно и выйдет вам в примерно 300 рублей, если заказать все в Китае.














Оставляем клей сохнуть, это займет всего пару минут.

Шаг второй.
Так как весь принцип работы термогенератора основан на разности температур на элементе Пельтье, следовательно нужно приклеить еще один радиатор к его второй стороне. Наносим термопасту и клей и аналогично первому радиатору приклеиваем к элементу, слегка придавив радиатор.

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector