3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Устройство коллекторного двигателя переменного тока

Содержание

Устройство коллекторного электродвигателя

Чаще статор коллекторного двигателя снабжен двумя полюсами. Безотносительно, пылесос, кухонный комбайн, стиральная машина. Коллекторные двигатели поддаются регулировке, обладают приемлемыми стартовыми характеристиками, контрастируя большинству асинхронных. Для простых граждан недостаток один: шумность. Поэтому в холодильниках, вентиляторах ставится асинхронный двигатель. На вытяжках любые встретим. Рассмотрим устройство коллекторного двигателя.

Внешний вид коллекторного двигателя

Крышка отсека щетки

Новичков волнует вопрос – способ идентификации коллекторного двигателя. Проще простого. Посмотрите фото болгарки, сделано специально для портала ВашТехник: боковины корпуса демонстрируют крышечки из изоляционного материала под шлицевую отвертку. Потрудившись открутить, внутри видим контактные площадки, пружина графитовой щетки. Ключевой признак коллекторного двигателя. Электрический инструмент снабжается приспособлениями быстрой замены графита, который считается расходным материалом.

Контактная площадка и пружина графитовой щётки

Щетки коллекторного двигателя

В коробке прилагается запасной комплект. Фото крупным планом показывает запасные щетки. Каждая включает:

  1. Графитовый электрод. Форма широко варьируется в зависимости от типа двигателя. Графит точат надфилями, напильниками, получая заданные размеры. Не критично. Главное, избежать больших зазоров, форма держателя специально создана снизить люфт. Графитовый электрод стачивается, увеличивается искрение вплоть до появления кругового огня. Коллекторный двигатель сильно разогревается, дымится. Процесс может лицезреть настойчивый зритель Ютуба (см. англоязычный домен).
  2. Контактная латунная площадка служит для подсоединения питания. В бытовых инструментах чаще 230 вольт с одной оговоркой: часть периода синусоиды отсечена. Позволяет регулировать скорость (болгарки забудьте). Больше угол отсечки, ниже скорость движения вала. Регуляторная схема сформирована тиристором, подстраивается переменным резистором.
  3. Пружина протянута меж контактной площадкой и графитовым электродом. Служит целям прижатия. В результате графитовый электрод скользит, обегая коллектор, одновременно смазывая поверхность. Сопротивление щеток, показанных рисунком близко 7 Ом, сопоставимо с обмотками. На переменном токе расклад меняется. Наделенное индуктивностью сопротивление обмоток резко растет, щетки остаются прежними. Графит играет роль ограничительных резисторов, благодаря углероду, ток ротора бессилен подняться выше 15 А.
  4. Ключевой частью щеток назовем тросик высокой гибкости, составленный медными нитями. Хорошо гнется, по мере стачивания графитовой щетки процессом эксплуатации легко растягивается, достигая нужных размеров.

У коллекторного двигателя всегда имеются щетки. У некоторых асинхронных моторов присутствуют токосъемники, не делящиеся на секции (реже стоит коллекторный стартер, касается синхронных двигателей). Щеточный аппарат отличается конструкцией от демонстрируемого коллекторным двигателем. Асинхронный мотор выдает сравнительно тихая работа.

Щетки легко раскалываются вибрациями. Одна из причин, почему коллекторные двигатели в промышленности стараются не применять (сложно найти трехфазные модели). Вторая – токосъёмники легко забиваются пылью, требуя регулярной чистки. Впрочем, проблема наблюдается у асинхронных машин с фазным ротором. В последнем случае графитом обычно не пахнет. Итак, рассматриваем сегодня коллекторный однофазный электродвигатель.

Варисторы коллекторного двигателя

Коллекторные двигатели наделены одним неприятным свойством: искрят. Вызывает сильные помехи, идущие обратно в сети снабжения, главное не это. Искрение приводит к невыгодным условиям эксплуатации двигателя. Нужно гасить дугу варисторами. Корпус элементов чаще округлый, с двумя ножками. Одна (см. фото) присоединяется к контактной площадке щетки (непосредственно, посредством латунных переходников), вторая припаивается к корпусу.

Варистор системы защиты двигателя

Варисторов два, защищают коллекторный двигатель с обеих сторон. Механика работы следующая:

  • Повышенная нагрузка вала вызывает сильное искрение, потенциал щетки может значительно превышать среднее действующее значение 230 вольт.
  • Варисторы парно пробиваются, замыкают излишек на корпус, ток поглощается толщей металла, рассеиваясь тепловыми потерями.

Схему считаем бесполезной с точки зрения КПД. Мощность теряется даром. Известен фактор, использующий искрение на пользу.

Схема автоподстройки оборотов коллекторного двигателя

Тиристорная схема подстройки оборотов коллекторного двигателя

Уровень искрения определен скоростью вращения. Допустим, нагрузка вала мясорубки увеличилась. Обороты временно понижаются. Уровень искрения меняется, вызывая отклик специальной тиристорной схемы управления оборотами. Ключ изменяет угол отсечки напряжения, компенсируя действие нагрузки. Тиристорная схема, показанная фото, контролировала кухонный комбайн Philips. Видим массу защитных реле, не позволяющих включить прибор при открытых крышках, в разобранном виде.

Главной частью схемы выступает тиристор. На снимке отыщем по небольшому металлическому пластинчатому радиатору. Схема по цепочке обратной связи получает информацию о силе искрения, при помощи нее же происходит задание оборотов. Для реализации указанных функций плата содержит парочку переменных резисторов:

  1. Полукруглое сопротивление с крестообразной головкой послужит целям подстройки рабочего режима тиристора. Значение задается углом поворота лабораторией завода, в процессе эксплуатации изменению оператором не подлежит.
  2. Второй резистор переменный. Шлицевая головка связана с ручкой, красующейся на панели управления корпуса. Задается скорость вращения вала. Делается чаще ступенчато.

Сообразно назначению двигателя, питается сложным образом. Коричневый, белый проводки уходят на щетки ротора, прочими тремя задается режим скорости путем подпитки определенного числа витков катушек статора.

Коллектор двигателя, обмотки, сердечник

Внешний вид коллектора

Название тип двигателей получил, благодаря наличию коллектора. Посмотрите фото: видим на валу массивный медный барабан, разделенный секциями: коллектор. Сформирован 24-х ламелями. К каждой подходит конец предыдущей и начало следующей обмотки. Идут, перекрещиваясь. Каждая обмотка ложится сразу на две соседние в круге ламели. Как понятно из сказанного, суммарное количество катушек равняется числу секций коллектора (24). Расположены в два слоя, первый лежит на поверхности в нишах сердечника, второй прячется внутри.

На одной половине оборота направление поля обмотки, допустим, положительное, на второй – отрицательное. Смена происходит в момент пересечения щеткой двух ламелей, к которым подходят концы катушки. Правильное распределение углов относительного положения щеток, полюсов статора, сдвига намотки якоря обеспечивает рациональную передачу мощности. Наибольшим моментом в данную долю секунды обладает катушка, перпендикуляр плоскости которой максимально приближен полюсу статора.

Читать еще:  Подбор конденсатора по мощности двигателя

Сердечник и обмотки

Сердечник сформирован 12-ю секциями. Каждая катушка наматывается через четыре провала. Например, занимает первую, шестую ниши. И так далее, по кругу, образуется четыре катушки. Следовательно, при намотке следует соблюдать аналогичный порядок. Важно правильно задать угол меж (двумя) контактными ламелями, куда подходят окончания провода, и плоскостью перпендикуляра катушки. Примерно 45 градусов, щетки расположены к полюсам статора примерно под этим же углом.

Катушки совершенно одинаковой длины, выполняются проводом единого сечения, протяженности. Коллектор считается симметричной конструкцией. Добавим к этому, мотор может питаться переменным и постоянным током. Устройство коллекторного электродвигателя таково, что в катушках направление поля меняется два раза за оборот. Означает, при питании постоянным током внутри процессы таковыми не являются.

Сердечник сформирован тонкими пластинами электротехнической стали, спрессованными, разделенными изоляционным лаком. Коллекторные электродвигатели переменного тока генерируют магнитное поле на статоре, разогревающее сталь. Причинами выступают вихревые токи, эффект перемагничивания. Температура быстро идет вверх. На основе явления действуют индукционные плиты. Разделение сердечника пластинами позволит снизить значимость перемагничивания вихревыми токами. Коллекторные электродвигатели постоянного тока намного проще, КПД выше.

Имеется второе отличие. При питании постоянным током для создания требуемой напряженности магнитного поля статора хватает меньшего количества витков. Поэтому во многих случаях (как и в нашем) обмотка делится двумя частями. Питание идет переменным током (требуется получить максимум оборотов) – в работу включаются все витки. В противном случае – определенная доля. Становится возможным подключение коллекторных электродвигателей к источнику питания. Важно, потому что многие асинхронные машины подобного обращения не терпят.

Статор коллекторного двигателя

Статор коллекторного двигателя

Порядком затронули тему, рассказали, что обмотка статора делится на две части, сердечник собирается пластинами электротехнической стали, избегая вносить потери перемагничивания, вихревых токов. Осталось добавить: полюсов обычно два – северный, южный. Почему? В противном случае понадобилась бы иная конструкция ротора, коллектора.

Полюсы статора сдвинуты на некоторый угол относительно щеток пространственно. Сложно сказать, зачем в точности делается. Для описанной конструкции коллекторного двигателя изменять нельзя, углом сдвига щеток относительно полюсов статора и способом намотки задается правильное распределение полей. Часто неудовлетворительное, тогда выполняют компенсацию.

Принцип действия коллекторного электродвигателя достигает наилучшей фазы путем использования дополнительных обмоток статора. В их задачи входит исправление формы поля. Дополнительные обмотки меньше основных, число аналогичное, расположены меж главными полюсами. Компенсация реактивной ЭДС не требует большой напряженности поля. Витков дополнительных полюсов меньше, сердечник часто сплошной (снижает стоимость изготовления конструкции). Сечение провода часто демонстрирует вид полосы.

Преобладающая часть бытовой техники использует принцип работы коллекторного электродвигателя. В состав реальных приборов часто входят устройства контроля и защиты. В нашем случае термореле серии 3MP корейской фирмы Klixon. В исходном варианте приматывалось к обмотке посредством изоляционной ленты. Часто встретим аналогичного рода термопредохранители, датчики частоты оборотов. Без этого не работает стиральная машина (режим взвешивания белья).

Обзор заканчиваем, надеемся, повествование вышло интересным, про вращающееся магнитное поле речь велась не раз, не видим смысла повторяться.

Коллекторный двигатель постоянного и переменного тока

В бытовом электрооборудовании, где используются электродвигатели, как правило, устанавливаются электромашины с механической коммутацией. Такой тип двигателей называют коллекторными (далее КД). Предлагаем рассмотреть различные виды таких устройств, их принцип действия и конструктивные особенности. Мы также расскажем о достоинствах и недостатках каждого из них, приведем примеры сферы применения.

Что такое коллекторный двигатель?

Под таким определением подразумевается электромашина, преобразовывающая электроэнергию в механическую, и наоборот. Конструкция устройства предполагает наличие хотя бы одной обмотки подсоединенной к коллектору (см. рис. 1).

Рисунок 1. Коллектор на роторе электродвигателя (отмечен красным)

В КД данный элемент конструкции используется для переключения обмоток и в качестве датчика, позволяющего определить положение якоря (ротора).

Виды КД

Классифицировать данные устройства принято по типу питания, в зависимости от этого различают две группы КД:

  1. Постоянного тока. Такие машины отличаются высоким пусковым моментом, плавным управлением частоты вращения и относительно простой конструкцией.
  2. Универсальные. Могут работать как от постоянного, так и переменного источника электроэнергии. Отличаются компактными размерами, невысокой стоимостью и простотой управления.

Первые, делятся на два подвида, в зависимости от организации индуктора он может быть на постоянных магнитах или специальных катушках возбуждения. Они служат для создания магнитного потока, необходимого для образования вращательного момента. КД, где используются катушки возбуждения, различают по типам обмоток, они могут быть:

  • независимыми;
  • параллельными;
  • последовательными;
  • смешанными.

Разобравшись с видами, рассмотрим каждый из них.

КД универсального типа

На рисунке ниже представлен внешний вид электромашины данного типа и ее основные элементы конструкции. Данное исполнение характерно практически для всех КД.

Конструкция универсального коллекторного двигателя

Обозначения:

  • А – механический коммутатор, его также называют коллектором, его функции были описаны выше.
  • В – щеткодержатели, служат для крепления щеток (как правило, из графита), через которые напряжение поступает на обмотки якоря.
  • С – Сердечник статора (набирается из пластин, материалом для которых служит электротехническая сталь).
  • D – Обмотки статора, данный узел относится к системе возбуждения (индуктору).
  • Е – Вал якоря.

У устройств данного типа, возбуждение может быть последовательным и параллельным, но поскольку последний вариант сейчас не производят, мы его не будем рассматривать. Что касается универсальных КД последовательного возбуждения, то типовая схема таких электромашин представлена ниже.

Схема универсального коллекторного двигателя

Универсальный КД может работать от переменного напряжения благодаря тому, что когда происходит смена полярности, ток в обмотках возбуждения и якоря также меняет направление. В результате этого вращательный момент не изменяет своего направления.

Особенности и область применения универсальных КД

Основные недостатки данного устройства проявляются при его подключении к источникам переменного напряжения, что отражается в следующем:

  • снижение КПД;
  • повышенное искрообразование в щеточно-коллекторном узле, и как следствие, его быстрый износ.

Ранее КД широко применялись, во многих бытовых электроприборах (инструмент, стиральные машины, пылесосы и т.д.). На текущий момент производители практически престали использовать данный тип двигателей отдав предпочтение безколлекторным электромашинам.

Теперь рассмотрим коллекторные электромашины, работающие от источников постоянного напряжения.

Читать еще:  Регулировка подшипников шпинделя 16к20

КД с индуктором на постоянных магнитах

Конструктивно такие электромашины отличаются от универсальных тем, что вместо катушек возбуждения используются постоянные магниты.

Конструкция коллекторного двигателя на постоянных магнитах и его схема

Этот вид КД получил наибольшее распространение по сравнению с другими электромашинами данного типа. Это объясняется невысокой стоимостью вследствие простоты конструкции, простым управлением скорости вращения (зависит от напряжения) и изменением его направления (достаточно изменить полярность). Мощность двигателя напрямую зависит от напряженности поля, создаваемого постоянными магнитами, что вносит определенные ограничения.

Основная сфера применения – маломощные приводы для различного оборудования, часто используется в детских игрушках.

КД на постоянных магнитах с игрушки времен СССР

К числу преимуществ можно отнести следующие качества:

  • высокий момент силы даже на низкой частоте оборотов;
  • динамичность управления;
  • низкая стоимость.

Основные недостатки:

  • малая мощность;
  • потеря магнитами своих свойств от перегрева или с течением времени.

Для устранения одного из основных недостатков данных устройств (старения магнитов) в системе возбуждения используются специальные обмотки, перейдем к рассмотрению таких КД.

Независимые и параллельные катушки возбуждения

Первые получили такое название вследствие того, что обмотки индуктора и якоря не подключаются друг к другу и запитываются отдельно (см. А на рис. 6).

Рисунок 6. Схемы КД с независимой (А) и параллельной (В) обмоткой возбуждения

Особенность такого подключения заключается в том, что питание U и UK должны отличаться, в противном случае н возникнет момент силы. Если невозможно организовать такие условия, то катушки якоря и индуктора подключается параллельно (см. В на рис. 6). Оба вида КД обладают одинаковыми характеристиками, мы сочли возможным объединить их в одном разделе.

Момент силы у таких электромашин высокий при низкой частоте вращения и уменьшается при ее увеличении. Характерно, что токи якоря и катушки независимы, а общий ток является суммой токов, проходящих через эти обмотки. В результат этого, при падении тока катушки возбуждения до 0, КД с большой вероятностью выйдет из строя.

Сфера применения таких устройств – силовые установки с мощностью от 3 кВт.

Положительные черты:

  • отсутствие постоянных магнитов снимает проблему их выхода из строя с течением времени;
  • высокий момент силы на низкой частоте вращения;
  • простое и динамичное управление.

Минусы:

  • стоимость выше, чем у устройств на постоянных магнитах;
  • недопустимость падения тока ниже порогового значения на катушке возбуждения, поскольку это приведет к поломке.

Последовательная катушка возбуждения

Схема такого КД представлена на рисунке ниже.

Схема КД с последовательным возбуждением

Поскольку обмотки включены последовательно, то ток в них будет равным. В результате этого, когда ток в обмотке статора становится меньше, чем номинальный (это происходит при небольшой нагрузке), уменьшается мощность магнитного потока. Соответственно, когда нагрузка увеличивается, пропорционально увеличивается мощность потока, вплоть до полного насыщения магнитной системы, после чего эта зависимость нарушается. То есть, в дальнейшем рост тока в обмотке катушки якоря не приводит к увеличению магнитного потока.

Указанная выше особенность проявляется в том, что КД данного типа непозволительно запускать при нагрузке на четверть меньше номинальной. Это может привести к тому, что ротор электромашины резко увеличит частоту вращения, то есть, двигатель пойдет «в разнос». Соответственно, такая особенность вносит ограничения на сферу применения, например, в механизмах с ременной передачей. Это связано с тем, что при ее обрыве электромашина начинает работать в холостом режиме.

Указанная особенность не распространяется на устройства, чья мощность менее 200 Вт, для них допустимы падения нагрузки вплоть до холостого режима работы.

Преимущества КД с последовательной катушкой, такие же, как у предыдущей модели, за исключением простоты и динамичности управления. Что касается минусов, то к ним следует отнести:

  • высокую стоимость в сравнении с аналогами на постоянных магнитах;
  • низкий уровень момента силы при высокой частоте оборотов;
  • поскольку обмотки статора и возбуждения подключены последовательно, возникают проблемы с управлением скоростью вращения;
  • работа без нагрузки приводит к поломке КД.

Смешанные катушки возбуждения

Как видно из схемы, представленной на рисунке ниже, индуктор на КД данного типа обладает двумя катушками, подключенных последовательно и параллельно обмотке ротора.

Схема КД со смешанными катушками возбуждения

Как правило, одна из катушек обладает большей намагничивающей силой, поэтому она считается, как основная, соответственно, вторая – дополнительная (вспомогательная). Допускается встречное и согласованное включение катушек, в зависимости от этого интенсивность магнитного потока соответствует разности или сумме магнитных сил каждой обмотки.

При встречном включении характеристики КД становятся близкими к соответствующим показателям электромашин с последовательным или параллельным возбуждением (в зависимости от того, какая из катушек является основной). То есть, такое включение актуально, если необходимо получить результат в виде неизменной частоты оборотов или их увеличению при возрастании нагрузки.

Согласованное включение приводит к тому, что характеристики КД будут соответствовать среднему значению показателями электромашин с параллельными и последовательными катушками возбуждения.

Единственный недостаток такой конструкции – самая высокая стоимость в сравнении с другими типами КД. Цена оправдывается благодаря следующими положительными качествами:

  • не устаревают магниты, за отсутствием таковых;
  • малая вероятность выхода из строя при нештатных режимах работы;
  • высокий момент силы на низкой частоте вращения;
  • простое и динамичное управление.

Устройство и схема подключения коллекторного двигателя переменного тока

Коллекторные двигатели переменного тока достаточно широко применяются как силовые агрегаты бытовой техники, ручного электроинструмента, электрооборудования автомобилей, систем автоматики. Схема подключения двигателя, а также его устройство напоминают схему и устройство электродвигателя постоянного тока с последовательным возбуждением.

Область применения таких моторов обусловлена их компактностью, малым весом, легкостью управления, сравнительно невысокой стоимостью. Наиболее востребованы в этом производственном сегменте электродвигатели малой мощности с высокой частотой вращения.

Особенности конструкции и принцип действия

По сути, коллекторный двигатель представляет собой достаточно специфичное устройство, обладающее всеми достоинствами машины постоянного тока и, в силу этого, обладающее схожими характеристиками. Отличие этих двигателей состоит в том, что корпус статора мотора переменного тока для снижения потерь на вихревые токи выполняется из отдельных листов электротехнической стали. Обмотки возбуждения машины подключаются последовательно для оптимизации работы в бытовой сети 220в.

Могут быть как одно-, так и трехфазными, благодаря способности работать от постоянного и переменного тока называются ещё универсальными. Кроме статора и ротора конструкция включает щеточно-коллекторный механизм и тахогенератор. Вращение ротора в коллекторном электродвигателе возникает в результате взаимодействия тока якоря и магнитного потока обмотки возбуждения. Через щетки ток подается на коллектор, собранный из пластин трапецеидального сечения и является одним из узлов ротора, последовательно соединенного с обмотками статора.

Читать еще:  Ремонт аккумулятора шуруповерта деволт

В целом принцип работы коллекторного мотора можно наглядно продемонстрировать с помощью известного со школы опыта с вращением рамки, помещенной между полюсами магнитного поля. Если через рамку протекает ток, она начинает вращаться под действием динамических сил. Направление движения рамки не меняется при изменении направления движения тока в ней.

Последовательное подсоединение обмоток возбуждения дает большой максимальный момент, но появляются большие обороты холостого хода, способные привести к преждевременному выходу механизма из строя.

Упрощенная схема подключения

Типовая схема подключения может предусматривать до десяти выведенных контактов на контактной планке. Ток от фазы L протекает до одной из щеток, затем передается на коллектор и обмотку якоря, после чего проходит вторую щетку и перемычку на обмотки статора и выходит на нейтраль N. Такой способ подключения не предусматривает реверс двигателя вследствие того, что последовательное подсоединение обмоток ведет к одновременной замене полюсов магнитных полей и в результате момент всегда имеет одно направление.

Направление вращения в этом случае можно изменить, только поменяв местами выхода обмоток на контактной планке. Включение двигателя «напрямую» выполняется только с подсоединенными выводами статора и ротора (через щеточно-коллекторный механизм). Вывод половины обмотки используется для включения второй скорости. Следует помнить, что при таком подключении мотор работает на полную мощность с момента включения, поэтому эксплуатировать его можно не более 15 секунд.

Наши читатели рекомендуют! Для экономии на платежах за электроэнергию наши читатели советуют ‘Экономитель энергии Electricity Saving Box’. Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Управление работой двигателя

На практике используются двигатели с различными способами регулирования работы. Управление коллекторным мотором может осуществляться с помощью электронной схемы, в которой роль регулирующего элемента выполняет симистор, «пропускающий» заданное напряжение на мотор. Симистор работает, как быстросрабатывающий ключ, на затвор которого приходят управляющие импульсы и открывают его в заданный момент.

В схемах с использованием симистора реализован принцип действия, основанный на двухполупериодном фазовом регулировании, при котором величина подаваемого на мотор напряжения привязана к импульсам, поступающим на управляющий электрод. Частота вращения якоря при этом прямо пропорциональна приложенному к обмоткам напряжению. Принцип работы схемы управления коллекторным двигателем упрощенно описывается следующими пунктами:

  • электронная схема подает сигнал на затвор симистора,
  • затвор открывается, по обмоткам статора течет ток, придавая вращение якорю М двигателя,
  • тахогенератор преобразует в электрические сигналы мгновенные величины частоты вращения, в результате формируется обратная связь с импульсами управления,
  • в результате ротор вращается равномерно при любых нагрузках,
  • реверс электродвигателя осуществляется с помощью реле R1 и R

Помимо симисторной существует фазоимпульсная тиристорная схема управления.

Преимущества и недостатки

К неоспоримым достоинствам таких машин следует отнести:

  • компактные габариты,
  • увеличенный пусковой момент, «универсальность» работа на переменном и постоянном напряжении,
  • быстрота и независимость от частоты сети,
  • мягкая регулировка оборотов в большом диапазоне с помощью варьирования напряжения питания.

Недостатком этих двигателей принято считать использование щеточно-коллекторного перехода, который обуславливает:

  • снижение долговечности механизма,
  • искрение между и коллектором и щетками,
  • повышенный уровень шумов,
  • большое количество элементов коллектора.

Типичные неисправности

Наибольшего внимания к себе требует щеточно-коллекторный механизм, в котором наблюдается искрение даже при работе нового двигателя. Сработанные щетки следует заменить для предотвращения более серьезных неисправностей: перегрева ламелей коллектора, их деформации и отслаивания. Кроме того, может произойти межвитковое замыкание обмоток якоря или статора, в результате которого происходит значительное падение магнитного поля или сильное искрение коллекторно-щеточного перехода.

Избежать преждевременного выхода из строя универсального коллекторного двигателя может грамотная эксплуатация устройства и профессионализм изготовителя в процессе сборки изделия.

Схема коллекторного двигателя переменного тока

Коллекторные двигатели переменного тока нашли свое широкое применение в различных видах бытовой техники:

  • пылесосы;
  • стиральные машины;
  • шуруповерты;
  • электродрели;
  • строительные фены

и так далее. Полученные Вами элементарные знания об устройстве таких электрических машин, помогут Вам в дальнейшем находить различные причины таких поломок и соответственно, находить способы их устранения.

Устройство коллекторного двигателя — переменного тока

Общее представление об устройстве коллекторного двигателя переменного тока наглядно можно получить из данного схематического изображения рис.1.

К характерным неисправностям данного типа электродвигателей можно отнести следующие причины:

и износ подшипников.

Всем нам известные коллекторные электродвигатели переменного тока — от пылесоса фото 1 и другой бытовой техники с наличием таких двигателей, — подвергаются:

и тепловым перегрузкам, и в ряде случаев детали подлежат ремонту либо их полной замене.

Схема коллекторного двигателя — переменного тока

В данном рисунке представлена универсальная схема коллекторного двигателя рис.2. Схема имеет три вывода проводов от двух обмоток статора, для подключения как к переменному так и к постоянному напряжениям, то-есть, двигатель способен работать как от постоянного так и от переменного тока. рис.2

На схеме даны следующие обозначения:

Два конца провода из трех выводов обмоток статора необходимы так-же для подключения сглаживающего фильтра конденсатора.

Сопротивление обмоток — коллекторного двигателя

Для замера сопротивлений обмоток статора коллекторного двигателя нужно соединить поочередно щупы измерительного прибора с выводами проводов фото 2.

Замеры сопротивлений обмоток статора выполняются с целью определения их целостности либо разрыва перегорания провода в обмотке.

Чтобы измерить сопротивление обмоток ротора коллекторного двигателя, — выполняется замер сопротивления ламелей начала и концы обмоток ротора, соединенные с металлическими пластинами — на коллекторе фото 3, рис. 3.

И чтобы проверить отсутствие либо замыкание обмотки на корпус магнитопровода ротора, нужно соединить один конец щупа прибора с пластиной коллектора и второй щуп соединить с магнитопроводом рис. 4.

При замыкании обмотки ротора на корпус магнитопровода — сопротивление для данного участка приймет нулевое значение.

В данной теме Вы ознакомились с устройством и способами проведения диагностики коллекторного электродвигателя, и это далеко еще не все.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector